Chứng minh: 4n+3. Là phân số tối giản với mọi số nguyên n
3n+2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(d=\left(3n-2,4n-3\right)\)
=> \(\left\{{}\begin{matrix}3n-2⋮d\\4n-3⋮d\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}12n-8⋮d\\12n-9⋮d\end{matrix}\right.\)
=> \(12n-8-\left(12n-9\right)⋮d\)
\(\Rightarrow1⋮d\) \(\Rightarrow d=1\)
=> phân số \(\dfrac{3n-2}{4n-3}\) là phân số tối giản
Hướng dẫn giải:
Gọi d là ƯCLN của 3n - 2 và 4n - 3
⇒ (3n - 2)⋮ d và (4n - 3)⋮ d
⇒ [3(4n - 3) - 4(3n - 2)] = -1⋮ d
⇒ d = 1 hoặc d = -1
Vậy phân thức đã cho tối giản với ∀n ∈ N
Hướng dẫn giải:
Gọi d là ƯCLN của 3n - 2 và 4n - 3
⇒ (3n - 2)⋮ d và (4n - 3)⋮ d
⇒ [3(4n - 3) - 4(3n - 2)] = -1⋮ d
⇒ d = 1 hoặc d = -1
Vậy phân thức đã cho tối giản với ∀n ∈ N
Gọi d là ƯCLN (3n - 2; 4n - 3) . Nên ta có :
3n - 2 ⋮ d và 4n - 3 ⋮ d
<=> 4(3n - 2) ⋮ d và 3(4n - 3) ⋮ d
<=> 12n - 8 ⋮ d 12n - 9 ⋮ d
=> (12n - 8) - ( 12n - 9) ⋮ d
=> 1 ⋮ d => d = 1
Vì ƯCLN (3n - 2; 4n - 3) = 1 => \(\frac{3n-2}{4n-3}\) tối giản ( đpcm )
Đặt \(d=\left(n+1,3n+2\right)\).
Suy ra \(\hept{\begin{cases}n+1⋮d\\3n+2⋮d\end{cases}}\Rightarrow3\left(n+1\right)-\left(3n+2\right)=1⋮d\Rightarrow d=1\).
Do đó ta có đpcm.
Đặt \(d=\left(2n+1,4n+3\right)\).
Suy ra \(\hept{\begin{cases}2n+1⋮d\\4n+3⋮d\end{cases}}\Rightarrow\left(4n+3\right)-2\left(2n+1\right)=1⋮d\Rightarrow d=1\).
Do đó ta có đpcm.
Gọi d=ƯCLN(2n+3;4n+8)
=>\(\left\{{}\begin{matrix}4n+8⋮d\\2n+3⋮d\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}4n+8⋮d\\4n+6⋮d\end{matrix}\right.\Leftrightarrow4n+8-4n-6⋮d\)
=>\(2⋮d\)
mà 2n+3 lẻ
nên d=1
=>ƯCLN(2n+3;4n+8)=1
=>\(P=\dfrac{2n+3}{4n+8}\) là phân số tối giản với mọi n<>-2
Gọi Ư(n+1;2n+3) = d ( \(d\in\)N*)
\(n+1=2n+2\left(1\right);2n+3\left(2\right)\)
Lấy (2 ) - (1) ta được : \(2n+3-2n+2=1⋮d\Rightarrow d=1\)
Vậy ta có đpcm
Gọi Ư\(\left(3n+2;5n+3\right)=d\)( d \(\in\)N*)
\(3n+2=15n+10\left(1\right);5n+3=15n+9\left(2\right)\)
Lấy (!) - (2) ta được : \(15n+10-15n-9=1⋮d\Rightarrow d=1\)
Vậy ta có đpcm
a) Gọi \(d\) là UCLN \(\left(n+1,2n+3\right)\left(d\in N\right)\)
Ta có : \(\left[{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2n+2⋮d\\2n+3⋮d\end{matrix}\right.\)
\(\Rightarrow2n+3-\left(2n+2\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\left(đpcm\right)\)
b) Gọi \(d\) là \(UCLN\left(2n+3,4n+8\right)\left(d\in N\right)\)
Ta có : \(\left[{}\begin{matrix}2n+3⋮d\\4n+8⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}4n+6⋮d\\4n+8⋮d\end{matrix}\right.\)
\(\Rightarrow4n+8-\left(4n+6\right)⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow d\in\left\{1;2\right\}\)
Mà 2n+3 là số lẻ nên
\(\Rightarrow d=1\left(đpcm\right)\)
c) Gọi \(d\) là \(UCLN\left(3n+2;5n+3\right)\left(d\in N\right)\)
Ta có : \(\left[{}\begin{matrix}3n+2⋮d\\5n+3⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}15n+10⋮d\\15n+9⋮d\end{matrix}\right.\)
\(\Rightarrow15n+10-\left(15n+9\right)⋮d\)
\(\Rightarrow d=1\left(đpcm\right)\)
ta gọi d là ƯC ( 3n + 2, 4n + 3 )
Ta có: 3n + 2 chia hết cho d thì 4( 3n + 2 )chia hết cho d
4n + 3 chia hết cho d thì 3( 4n + 3 ) chia hết cho d
=> [ 3( 4n + 3 ) - 4( 3n + 2 )] chia hết cho d tức là 1 chia hết cho d
Vậy d=1 do đó P/S 3n + 2/4n + 3 là P/S tối giản
Gọi a là UCLN94n +3;3n+2)
Ta có: 4n+3 chia hết a=> 3(4n+3) chia hết a hay 12n + 9 chia hết a
3n+2 chia hết a=> 4(3n+2) chia hết a hay 12n + 8 chia hết a
12n+9 chia hết a,12n+8 chia hết a=> (12n+9) -(12n+8 )chia hết a hay 1 chia hết a=> a=1
Đã hoàn thành. Tự kết luận nha. Good luck