CMR: a^2+b^2+1 >= ab+a+b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,\(\Leftrightarrow2a^2+2b^2+2-2ab-2a-2b\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2\left(b-1\right)^2\ge0\)(Luôn đúng)
Dấu '=' xảy ra khi \(a=b=1\)
2/Bổ sung đk a,b >= 0 (nếu a,b < 0,cho a=b=-2 suy ra a^3 + b^3 + 1 -3ab = -27 < 0)
Ta chứng minh BĐT \(x^3+y^3+z^3\ge3xyz\)
\(\Leftrightarrow x^3+y^3+z^3-3xyz\ge0\Leftrightarrow\frac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\ge0\) (đúng)
Áp dụng vào,suy ra: \(a^3+b^3+1^3-3ab\ge3ab-3ab=0\)
Dấu "=" xảy ra khi a = b = c = 1
trần đắc lợi lần sau nhớ gõ latex nha bạn, như này người làm dễ bị sai đề lắm
\(a\sqrt{b-1}+b\sqrt{a-1}\)
Áp dụng AM-GM :
\(a\sqrt{b-1}+b\sqrt{a-1}\)
\(=a\sqrt{1\cdot\left(b-1\right)}+b\sqrt{1\cdot\left(a-1\right)}\le a\cdot\frac{1+b-1}{2}+b\cdot\frac{1+a-1}{2}\)
\(=\frac{ab}{2}+\frac{ab}{2}=ab\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=2\)
1.
\(\left(1+a\right)^2=\left(1.1+\sqrt{\frac{a}{b}}.\sqrt{ab}\right)^2\le\left(1+\frac{a}{b}\right)\left(1+ab\right)=\frac{\left(a+b\right)\left(1+ab\right)}{b}\)
\(\Rightarrow\frac{1}{\left(1+a\right)^2}\ge\frac{b}{\left(a+b\right)\left(1+ab\right)}\)
\(\left(1+b\right)^2\le\frac{\left(a+b\right)\left(1+ab\right)}{a}\Rightarrow\frac{1}{\left(1+b\right)^2}\ge\frac{a}{\left(a+b\right)\left(1+ab\right)}\)
\(\Rightarrow\frac{1}{\left(1+a\right)^2}+\frac{1}{\left(1+b\right)^2}\ge\frac{a}{\left(a+b\right)\left(1+ab\right)}+\frac{b}{\left(a+b\right)\left(1+ab\right)}=\frac{1}{1+ab}=\frac{1}{2}\)
Dấu "=" xảy ra khi \(a=b=1\)
2.
\(P=\sqrt{\frac{a^2}{a^4+3}}+\sqrt{\frac{b^2}{b^4+3}}\le\sqrt{2\left(\frac{a^2}{a^4+3}+\frac{b^2}{b^4+3}\right)}\)
Đặt \(\left(a^2;b^2\right)=\left(x;y\right)\Rightarrow xy=1\)
\(Q=\frac{x}{x^2+3}+\frac{y}{y^2+3}=\frac{x}{x^2+3}+\frac{x}{3x^2+1}-\frac{1}{2}+\frac{1}{2}\)
\(Q=\frac{-\left(x-1\right)^2\left(3x^2-2x+3\right)}{2\left(x^2+3\right)\left(3x^2+1\right)}+\frac{1}{2}\le\frac{1}{2}\)
\(\Rightarrow P\le\sqrt{2Q}\le1\)
\(P_{max}=1\) khi \(a=b=1\)
Ta có a^2+b^2+1>=ab+a+b (1)
<=> 2a^2+2b^2+2>=2ab+2a+ab
<=>2a^2+2b^2+2-2ab-2a-2b>=0
<=>(a^2-2ab+b^2)+(a^2-2a+1)+(b^2-2b+1)>=0
<=>(a-b)^2+(a-1)^2+(b-1)^2>=0 luôn đúng
Vây BĐT(1) đúng (đpcm)
a2+b2+1-ab-a-b>=0
2a2+2b2+2-2ab-2a-2b>=0
(a-b)2+(a-1)2+(b-1)2>=0
Dấu = xảy ra khi a=b