cho tam giác abc. điểm m trên AC cách C một khoảng = 1/3 AC. Hai điểm N và P lần lượt nằm trên 2 cạnh AB và BC. điểm N cách A và P cách AB và BC một khoảng = 1/3 AB và 1/3 BC. nối AP, CN, MB chúng cắt nhau tại các điểm I, E, F. hãy chứng tỏ rằng tổng diện tích các tam giác: IMC; EAN; FBP bằng diện tích tam giác IEF.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình của bài như thế này phải không ? Nếu như thế thì mk giải cho ! Bài này cô mk dạy rồi !
Phân tích : Vì BP = \(\frac{1}{3}\)BC và hai hình tam giác : ABP và ABC có chung chiều cao hạ từ đỉnh A xuống đáy BC nên diện tích tam giác ABP bằng \(\frac{1}{3}\)diện tích tam giác ABC.
Tượng tự,diện tích mỗi hình tam giác BCM và CAN cũng bằng \(\frac{1}{3}\)diện tích tam giác ABC.
Vậy tổng diện tích ba tam giác : ABP , BMC , CAN bằng diện tích tam giác ABC.
Về mặt lý thuyết thì chúng có thể phủ kín tam giác ABC . Nhưng thật ra chúng để thừa lại phần diện tích tam giác IEF và chũng lại phủ lên các tam giác: IMC , EAN , FBP mỗi tam giác phủ hai lần nên thừ ra một lần . Chính điều này chứng tỏ :
SFBP + SEAN + SIMC = SIEF
Chúc bạn hok tốt !