cho hình thang vuông ABCD biết AD= 30 dm , BC = 45 dm , AB = 47 dm , M là trung điểm của cạnh AB
a) Tính diện tích hình thang ABCD
b) Tính diện tích hình tam giác AMD
c) Tính diện tích hình tam giac MCD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Không biết bạn có viết sai đề/ thiếu đề không nhỉ? Bài này làm được nhưng với dữ kiện như này thì lớp 5 không hợp lý lắm. Bạn xem lại đề!
Độ dài đoạn thẳng AE là :
10 : 2 = 5 (cm)
a) Diện tích hình thang BHDA là :
(10 + 5) x 10 : 2 = 75 (cm2)
b) Diện tích tam giác AHD:
10 x 10 : 2 = 50 (cm2)
Diện tích tam giác AHE:
5 x 5 : 2 =12.5 (cm2)
AB=1/3 CD và DM =1/2 MC hay MC =2/3 DC
=> AB/MC = 1/3:2/3=1/2
=> AB=1/2 MC
=> S.ABC =1/2 S.AMC vì AB=1/2 MC và chung chiều cao
chính là chiều cao hình thang
=> S.ABC =1/2x5=2,5cm2
ADM và AMC có DM=1/2MC và chung chiều cao là chiều cao hình thang
=> ADM =1/2x5=2,5cm2
=> S hình thang = 2,5x2+5=10cm2
a) Gọi H là chân đường vuông góc kẻ từ A xuống CD
Theo đề bài, ta có: AH=3(cm)
Xét hình bình hành ABCD có AH là đường cao ứng với cạnh CD(gt)
nên \(S_{ABCD}=AH\cdot CD=4\cdot3=12\left(cm^2\right)\)
a: \(S_{BNDA}=\dfrac{1}{2}\cdot\left(BN+AD\right)\cdot AB=\dfrac{1}{2}\cdot20\cdot\left(10+20\right)=30\cdot10=300\left(cm^2\right)\)
b: Xét ΔMAD vuông tại A và ΔNBA vuông tại B có
MA=NB
AD=BA
=>ΔMAD=ΔNBA
=>góc AMD=góc BNA
=>góc DAN+góc ADM=90 độ
=>DM vuông góc AN
Vì AM<AD nên MO<DO
\(S_{ADN}=\dfrac{1}{2}\cdot DO\cdot AN;S_{AMN}=\dfrac{1}{2}\cdot MO\cdot AN\)
mà DO>MO
nên \(S_{ADN}>S_{AMN}\)
=>\(S_{DON}>S_{MON}\)