Cho 2 đa thức:
F(x)= x2+2x+3
G(x)= x2-3x+\(\frac{1}{2}\)
Tìm x sao cho F(x)=G(x).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a)f(x)-g(x)`
`=x^3-2x^2+3x+1-(x^3+x-1)`
`=x^3-2x^2+3x+1-x^3-x+1`
`=(x^3-x^3)+(3x-x)-2x^2+2`
`=-2x^2+2x+2=0`
`b)f(x)-g(x)+h(x)=0`
`<=>-2x^2+2x+2+2x^2-1=0`
`<=>2x+1=0`
`<=>2x=-1`
`<=>x=-1/2`
Vậy `x=-1/2` thì `f(x)-g(x)+h(x)=0`
Ta có: f(x) - g(x) = x3 - 2x2 + 3x + 1 - (x3 + x - 1) = -2x2 + 2x
f(x) - g(x) + h(x) = -2x2 + 2x + 2x2 - 1 = 2x - 1
Mà: f(x) - g(x) + h(x) = 0
⇒ 2x - 1 = 0
\(\Leftrightarrow x=\dfrac{1}{2}\)
a, \(f\left(x\right)=2x^2+6x^4-3x^3+2011\)
\(=6x^4-3x^3+2x^2+2011\)
\(g\left(x\right)=2x^3-5x^2-3x^4-2012\)
\(=-3x^4+2x^3-5x^2-2012\)
b, \(f\left(x\right)+g\left(x\right)=6x^4-3x^3+2x^2+2011-3x^4+2x^3-5x^2-2012\)
\(=\left(6x^4-3x^4\right)+\left(2x^3-3x^3\right)+\left(2x^2-5x^2\right)+\left(2011-2012\right)\)
\(=3x^4-x^3-3x^2-1\)
\(f\left(x\right)-g\left(x\right)=6x^4-3x^3+2x^2+2011-\left(-3x^4+2x^3-5x^2-2012\right)\)
\(=6x^4-3x^3+2x^2+2011+3x^4-2x^3+5x^2+2012\)
\(=\left(6x^4+3x^4\right)-\left(3x^3+2x^3\right)+\left(2x^2+5x^2\right)+\left(2011+2012\right)\)
\(=9x^4-5x^3+7x^2+4023\)
Ta có: f(x):g(x)
\(=\dfrac{3x-a}{x-1}\)
\(=\dfrac{3x-3-a+3}{x-1}\)
\(=3+\dfrac{-a+3}{x-1}\)
Để f(x):g(x) có số dư là 2 thì 3-a=2
hay a=1
a: Ta có: f(x):g(x)
\(=\dfrac{3x-a}{x-1}\)
\(=\dfrac{3x-3+3-a}{x-1}\)
\(=3+\dfrac{3-a}{x-1}\)
Để f(x):g(x) có số dư là 2 thì 3-a=2
hay a=1
a: \(F\left(x\right)=x^5-3x^2+x^3-x^2-2x+5\)
\(=x^5+x^3-4x^2-2x+5\)
\(G\left(x\right)=x^5-x^4+x^2-3x+x^2+1\)
\(=x^5-x^4+2x^2-3x+1\)
b: Ta có: \(H\left(x\right)=F\left(x\right)+G\left(x\right)\)
\(=x^5+x^3-4x^2-2x+5+x^5-x^4+2x^2-3x+1\)
\(=2x^5-x^4+x^3-2x^2-5x+6\)
kết bạn ko