Chứng minh rằng :A=7.52n + 12.6n ( Với n \(\in\)N ) chia hết cho 19
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(7.5^{2n}+12.6^n\)
= \(7.5^{2n}+\left(19-7\right).6^n\)
= \(7.5^{2n}+19.6^n-7.6^n\)
= \(7\left(5^{2n}-6^n\right)+19.6^n\)
= \(7\left(25^n-6^n\right)+19.6^n\)
Có: \(19+6^n⋮19\)
\(7\left(25^n-6^n\right)⋮19\)
Vậy...................(đpcm)
Đặt \(A=7.5^{2n}+12.6^n=7.25^n+12.6^n\)
Do \(25\equiv6\left(mod19\right)\Rightarrow25^n\equiv6^n\left(mod19\right)\)
\(\Rightarrow A\equiv7.6^n+12.6^n\left(mod19\right)\)
\(\Rightarrow A\equiv19.6^n\left(mod19\right)\)
Do \(19.6^n⋮19\Rightarrow A⋮19\)
A = 7.52n + 12.6n
A = 7.(52)n + 12.6n
A = 7.25n + 12.6n
25 \(\equiv\) 6 (mod 19)
25n \(\equiv\) 6n (mod 19)
7 \(\equiv\) - 12 (mod 19)
⇒ 7.25n \(\equiv\) -12.6n (mod 19)
⇒ 7.25n -( -12.6n) ⋮ 19
⇒ 7.25n + 12.6n ⋮ 19
1)
a)251-1
=(23)17-1\(⋮\)23-1=7
Vậy 251-1\(⋮\)7
b)270+370
=(22)35+(32)35\(⋮\)22+32=13
Vậy 270+370\(⋮\)13
c)1719+1917
=(BS18-1)19+(BS18+1)17
=BS18-1+BS18+1
=BS18\(⋮\)18
d)3663-1\(⋮\)35\(⋮\)7
Vậy 3663-1\(⋮\)7
3663-1
=3663+1-2
=BS37-2\(⋮̸\)37
Vậy 3663-1\(⋮̸\)37
e)24n-1
=(24)n-1\(⋮\)24-1=15
Vậy 24n-1\(⋮\)15
Giả sử 9a + 5b : 19
Khử a:
3a + 8b : 19 => 9.(3a + 8b) = 27a + 72b
9a + 5b : 19 => 3.(9a + 5b) = 27a + 15b
=> (27a + 72b) - (27a + 15b) = 27a + 72b - 27a - 15b = 57b = 19.3b : 19 (1)
Khử b:
3a + 8b : 19 => 5.(3a + 8b) = 15a + 40b
9a + 5b : 19 => 8.(9a + 5b) = 72a + 40b
=> (15a + 40b) - (72a + 40b) = 15a + 40b - 72a - 40b = 57a = 19.3b : 19 (2)
Từ (1) và (2) => 9a + 5b : 19
Lời giải:
$2^3\equiv -1\pmod 9$
$\Rightarrow 2^{6n}\equiv (-1)^{2n}\equiv 1\pmod 9$
$\Rightarrow 2^{6n+2}=2^{6n}.4\equiv 4\pmod 9$
$\Rightarrow 2^{6n+2}=9k+4$ với $k$ tự nhiên.
Vì $2^{6n+2}$ chẵn nên $9k$ chẵn $\Rightarrow k$ chẵn.
Khi đó:
\(2^{2^{6n+2}}+3=2^{9k+4}+3\)
$2^9\equiv -1\pmod {19}$
$\Rightarrow 2^{9k}\equiv (-1)^k\equiv 1\pmod {19}$ (do $k$ chẵn)
$\Rightarrow 2^{9k+4}\equiv 16\pmod {19}$
$\Rightarrow 2^{2^{6n+2}}+3=2^{9k+4}+3\equiv 16+3\equiv 19\equiv 0\pmod {19}$
Vậy $2^{2^{6n+2}}+3\vdots 19$