Chứng minh : 2/32+2/52+2/72+...+2/20172<1003/2008
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{2}{3^2}+\frac{2}{5^2}+.......+\frac{2}{2007^2}\)
\(A=2.\left(\frac{1}{3.3}+\frac{1}{5.5}+......+\frac{1}{2007.2007}\right)\)
\(A< 2.\left(\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{2006.2007}\right)\)
\(A< 2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{2006}-\frac{1}{2007}\right)\)
\(A< 2.\left(\frac{1}{2}-\frac{1}{2007}\right)\)
\(A< 2.\frac{2005}{4014}\)
\(A< \frac{2005}{2007}\)
Ta thấy
2/(3x3) < 2/(2x4) = 1/2 – 1/4
2/(5x5) < 2/(4x6) = 1/4 – 1/6
2/(7x7) < 2/(6x8) = 1/6 – 1/8
………
2/(2007x2007) < 2/(2006x2008) = 1/2006 – 1/12008
Nên:
A = 2/3^2 +2/5^2+2/7^2 +.....+2/2007^2 < 2/(2x4) + 2/(4x6) + …. + 2/(2006x2008) =
1/2 – 1/4 + 1/4 – 1/6 + 1/6 – 1/8 + … + 1/2006 – 1/2008 =
1/2 – 1/2008 = 1003/2008
Vậy: .....
\(A< \frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2007.2009}=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2007}-\frac{1}{2009}=\frac{1}{3}-\frac{1}{2009}=\frac{2006}{6027}< \frac{2006}{4016}=\frac{1003}{2008}\)Vây:.......
Chứng minh rằng :
\(\frac{2}{3^2}\)+\(\frac{2}{5^2}\)+...+\(\frac{2}{2007^2}\)< \(\frac{1003}{2008}\)
Ta thấy: \(\frac{2}{3^2}=\frac{2}{3.3}< \frac{2}{2.4}=\frac{1}{2}-\frac{1}{4}\)
\(\frac{2}{5.5}< \frac{2}{4.6}=\frac{1}{4}-\frac{1}{6}\)\(;...;\frac{2}{2007.2007}< \frac{2}{2006.2008}=\frac{1}{2006}-\frac{1}{2008}\)
\(\Rightarrow\frac{2}{3^2}+\frac{2}{5^2}+...+\frac{2}{2007^2}< \frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2006}-\frac{1}{2008}\)
Ta có:\(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2006}-\frac{1}{2008}=\frac{1}{2}-\frac{1}{2008}=\frac{1004-1}{2008}=\frac{1003}{2008}\)
\(\Rightarrow\frac{2}{3^2}+\frac{2}{5^2}+...+\frac{2}{2007^2}< \frac{1003}{2008}\)(đpcm)
K mình nè!
Gọi tổng trên là A, ta có:
a) A = \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2008^2}\) \(< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2007.2008}\)
\(< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2007}-\frac{1}{2008}\)
\(< \frac{1}{1}-\frac{1}{2008}\)
\(< 1-\frac{1}{2008}\)
Vì 1 - 1/2008 < 1 nên A < 1 - 1/2008 < 1
Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2008^2}< 1\)
câu b đề sao đấy bạn
Chứng minh \(A=\frac{2}{3^2}+\frac{2}{5^2}+\frac{2}{7^2}+...+\frac{2}{2007^2}<\frac{1003}{2008}\)
Ta thấy: 32>32-1=(3-1).(3+1)=2.4
52>52-1=(5-1).(5+1)=4.6
72>72-1=(7-1).(7+1)=6.8
…………………………
20072>20072-1=(2007-1).(2007+1)=2006.2008
=> \(\frac{2}{3^2}<\frac{2}{2.4}\)
\(\frac{2}{5^2}<\frac{2}{4.6}\)
\(\frac{2}{7^2}<\frac{2}{6.8}\)
.................
\(\frac{2}{2007^2}<\frac{2}{2006.2008}\)
=> \(A=\frac{2}{3^2}+\frac{2}{5^2}+\frac{2}{7^2}+...+\frac{2}{2007^2}<\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2006.2008}\)
=> \(A<\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2006}-\frac{1}{2008}\)
=> \(A<\frac{1}{2}-\frac{1}{2008}\)
=> \(A<\frac{1003}{2008}\)
=>ĐPCM
bạn Lê Quốc Vượng cũng chơi bang bang hả có những tank gì rồi .Tớ có tank Triệu Vân, joker,tiên
cá, doraemon, quan công, nhện, pea,pega