Cho x,y là các số dương thỏa mãn: x+3y\(\le\)10
CMR:: \(\frac{1}{\sqrt{x}}+\frac{27}{\sqrt{3y}}\ge10\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(\left(1+9\right)\left(x+3y\right)\ge\left(\sqrt{x}+3\sqrt{3y}\right)^2\)
\(\Rightarrow\sqrt{x}+3\sqrt{3y}\le10\)
Đặt \(P=\frac{1}{\sqrt{x}}+\frac{27}{\sqrt{3y}}\)
\(P=\frac{1}{\sqrt{x}}+\sqrt{x}+\frac{27}{\sqrt{3y}}+3\sqrt{3y}-\left(\sqrt{x}+3\sqrt{3y}\right)\)
\(P\ge2+18-10=10\)
"="<=>x=1;y=3
+\(10=x+3y=x+\frac{y}{3}+\frac{y}{3}+\frac{y}{3}+\frac{y}{3}+\frac{y}{3}+\frac{y}{3}+\frac{y}{3}+\frac{y}{3}+\frac{y}{3}\ge10\sqrt[10]{\frac{1}{3^9}x.y^9}\)
\(=\frac{10}{3}.\sqrt[10]{3}.\sqrt[10]{xy^9}\)
\(\Rightarrow xy^9\le3^9\)
+\(\frac{1}{\sqrt{x}}+\frac{27}{\sqrt{3y}}=\frac{1}{\sqrt{x}}+\frac{3}{\sqrt{3y}}+\frac{3}{\sqrt{3y}}+.....+\frac{3}{\sqrt{3y}}\)
\(\ge10\sqrt[10]{\frac{3^9}{\sqrt{3^9x.y^9}}}\ge10\sqrt[10]{\frac{3^9}{\sqrt{3^9.3^9}}}=10\)
Dấu "=" xảy ra khi và chỉ khi \(x=1;y=3\)
Lời giải:
Áp dụng BĐT SVac-xơ:
\(\frac{1}{\sqrt{x}}+\frac{27}{\sqrt{3y}}=\frac{1}{\sqrt{x}}+\frac{9}{\sqrt{3y}}+\frac{9}{\sqrt{3y}}+\frac{9}{\sqrt{3y}}\geq \frac{(1+3+3+3)^2}{\sqrt{x}+3\sqrt{3y}}\)
\(\Leftrightarrow \frac{1}{\sqrt{x}}+\frac{27}{\sqrt{3y}}\geq \frac{100}{x+3\sqrt{3y}}(1)\)
Áp dụng BĐT Bunhiacopxky:
\((x+3y)(1+9)\geq (\sqrt{x}+3\sqrt{3y})^2\)
\(\Rightarrow \sqrt{x}+3\sqrt{3y}\leq \sqrt{10(x+3y)}\leq 10(2)\) do \(x+3y\leq 10\)
Từ \((1);(2)\Rightarrow \frac{1}{\sqrt{x}}+\frac{27}{\sqrt{3y}}\geq \frac{100}{x+3\sqrt{3y}}\geq \frac{100}{10}=10\) (đpcm)
Dấu bằng xảy ra khi \(\frac{\sqrt{x}}{1}=\frac{\sqrt{3y}}{3}; x+3y=10\Rightarrow x=1;y=3\)
Ta có: \(\dfrac{1}{\sqrt{x}}+\dfrac{27}{\sqrt{3y}}=\dfrac{1}{\sqrt{x}}+\dfrac{81}{3\sqrt{3y}}\ge\dfrac{\left(1+9\right)^2}{\sqrt{x}+3\sqrt{3y}}=\dfrac{100}{\sqrt{x}+3\sqrt{3y}}\) (1)
Áp dụng BĐT của Cô-si ta có:
\(\sqrt{x}=\sqrt{1.x}\le\dfrac{1+x}{2};3\sqrt{3y}\le\dfrac{9+3y}{2}\)
\(\Rightarrow\left(1\right)\ge\dfrac{100}{\dfrac{1+x}{2}+\dfrac{9+3y}{2}}=\dfrac{100}{\dfrac{10+x+3y}{2}}\ge\dfrac{100}{\dfrac{10+10}{2}}=\dfrac{100}{10}=10\)
Dấu "=" xảy ra ⇔ x=1;y=3
Nhớ có câu tương tự bài này mà sao nót ko hiển thị nhỉ? Thôi kệ nhai lại vậy:v
\(gt\Leftrightarrow\left(\frac{1}{x}+1\right)\left(\frac{1}{y}+1\right)=4\)
Đặt \(\frac{1}{x}=a;\frac{1}{y}=b\Rightarrow\left(a+1\right)\left(b+1\right)=4\Rightarrow ab+a+b=3\)
Ta có: \(LHS=\frac{1}{\sqrt{3x^2+1}}+\frac{1}{\sqrt{3y^2+1}}\)
\(=\frac{1}{\sqrt{3\left(\frac{1}{a}\right)^2+1}}+\frac{1}{\sqrt{3\left(\frac{1}{b}\right)^2+1}}\)
\(=\frac{a}{\sqrt{a^2+3}}+\frac{b}{\sqrt{b^2+3}}=\frac{a}{\sqrt{\left(a+1\right)\left(a+b\right)}}+\frac{b}{\sqrt{\left(b+1\right)\left(a+b\right)}}\) (thay cái giả thiết vào:v)
\(\le\frac{1}{2}\left(\frac{a}{a+1}+\frac{b}{b+1}+\frac{a+b}{a+b}\right)=\frac{1}{2}\left(\frac{a}{a+1}+\frac{b}{b+1}\right)+\frac{1}{2}\)
\(=\frac{1}{2}\left(\frac{ab+3}{ab+a+b+1}\right)+\frac{1}{2}=\frac{1}{2}\left(\frac{ab+3}{4}\right)+\frac{1}{2}\) (1)
Từ giả thiết dễ dàng chứng minh \(ab\le1\). Từ đó thay vào (1) ta có đpcm.
Nhớ có câu tương tự bài này mà sao nót ko hiển thị nhỉ? Thôi kệ nhai lại vậy:v
gt\Leftrightarrow\left(\frac{1}{x}+1\right)\left(\frac{1}{y}+1\right)=4gt⇔(x1+1)(y1+1)=4
Đặt \frac{1}{x}=a;\frac{1}{y}=b\Rightarrow\left(a+1\right)\left(b+1\right)=4\Rightarrow ab+a+b=3x1=a;y1=b⇒(a+1)(b+1)=4⇒ab+a+b=3
Ta có: LHS=\frac{1}{\sqrt{3x^2+1}}+\frac{1}{\sqrt{3y^2+1}}LHS=3x2+11+3y2+11
=\frac{1}{\sqrt{3\left(\frac{1}{a}\right)^2+1}}+\frac{1}{\sqrt{3\left(\frac{1}{b}\right)^2+1}}=3(a1)2+11+3(b1)2+11
=\frac{a}{\sqrt{a^2+3}}+\frac{b}{\sqrt{b^2+3}}=\frac{a}{\sqrt{\left(a+1\right)\left(a+b\right)}}+\frac{b}{\sqrt{\left(b+1\right)\left(a+b\right)}}=a2+3a+b2+3b=(a+1)(a+b)a+(b+1)(a+b)b (thay cái giả thiết vào:v)
\le\frac{1}{2}\left(\frac{a}{a+1}+\frac{b}{b+1}+\frac{a+b}{a+b}\right)=\frac{1}{2}\left(\frac{a}{a+1}+\frac{b}{b+1}\right)+\frac{1}{2}≤21(a+1a+b+1b+a+ba+b)=21(a+1a+b+1b)+21
=\frac{1}{2}\left(\frac{ab+3}{ab+a+b+1}\right)+\frac{1}{2}=\frac{1}{2}\left(\frac{ab+3}{4}\right)+\frac{1}{2}=21(ab+a+b+1ab+3)+21=21(4ab+3)+21 (1)
Từ giả thiết dễ dàng chứng minh ab\le1ab≤1. Từ đó thay vào (1) ta có đpcm.
Ta có \(\sqrt{3x+yz}=\sqrt{x\left(x+y+z\right)+yz}=\sqrt{\left(x+z\right)\left(x+y\right)}\ge\sqrt{xy}+\sqrt{xz}\)(BĐT buniacoxki)
=>\(VT\le\frac{x}{x+\sqrt{xz}+\sqrt{xy}}+\frac{y}{y+\sqrt{yx}+\sqrt{yz}}+\frac{z}{z+\sqrt{zx}+\sqrt{yz}}\)
=> \(VT\le\frac{\sqrt[]{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}+\frac{\sqrt{y}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}+\frac{\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\)(ĐPCM)
Dấu bằng xảy ra khi a=b=c=1
dùng buniacosky với x+3y<10 là dc
Giải ra