Cho tam giác vuông tại A (AB>AC) . Kẻ AH vuông góc ( H thuộc BC).Lấy điểm D thuộc tia đối của tia HA sao cho HD=HA a) Chứng minh rằng tam giác CAH= tam giác CDH và tia CB là tia phân giác của ACD b) Qua D kẻ một đường thẳng song song với AC cắt BC ở M. Chứng minh rằng tam giác CAH= tam giác MDH và AD là đường trung trực của đoạn CM c) Kẻ BN vuông góc với đường thẳng AM ( N thuộc tia AM ) . Chứng minh rằng ba điểm B , N , D thẳng hàng.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔCAH vuông tại H và ΔCDH vuông tại H có
HA=HD
CH chung
Do đó: ΔCAH=ΔCDH
Xét \(\Delta AHB\) và \(\Delta DHB\):
-AH=DH (giả thiết)
- Góc AHB = góc DHB = 90 o
-Chung cạnh HB
\(\Rightarrow\Delta AHB=\Delta DHB\)(c.g.c)
\(\Rightarrow\)Góc ABH = góc DBH ( 2 góc tương ứng)
Do đó BH hay BC là phân giác của góc ABD
Xét \(\Delta AHC\) và \(\Delta DHC\):
- AH= DH ( giả thiết)
- Góc AHC = góc DHC = 90 o
-Chung cạnh HC
\(\Rightarrow\Delta AHC=\Delta DHC\)(c.g.c)
\(\Rightarrow\) Góc ACH = góc DCH ( 2 góc tương ứng)
Do đó CH hay CB là tia phân giác của góc ACD.
a: góc B=90-30=60 độ
góc B>góc C
=>AC>AB
góc CAH=90-30=60 độ>góc C
=>CH>AH
b: Xét ΔAHC vuông tại H và ΔDHC vuông tại H có
CH chung
HA=HD
=>ΔCAH=ΔCDH
c: Xét ΔACB và ΔDCB có
CA=CD
góc ACB=góc DCB
CB chung
=>ΔACB=ΔDCB
=>góc CDB=góc CAB=90 độ
a)
Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC(ΔABC cân tại A)
AH chung
Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)
Suy ra: BH=CH(hai cạnh tương ứng)
Xét ΔABH vuông tại H và ΔDCH vuông tại D có
AH=DH(gt)
BH=CH(cmt)
Do đó: ΔABH=ΔDCH(hai cạnh góc vuông)
Suy ra: AB=DC(Hai cạnh tương ứng)
mà AB=AC(ΔABC cân tại A)
nên AC=DC(đpcm)
b) Xét ΔAHE vuông tại H và ΔDHE vuông tại H có
EH chung
AH=DH(gt)
Do đó: ΔAHE=ΔDHE(hai cạnh góc vuông)
Suy ra: AE=DE(Hai cạnh tương ứng)
Xét ΔACE và ΔDCE có
CA=CD(cmt)
CE chung
AE=DE(cmt)
Do đó: ΔACE=ΔDCE(c-c-c)
a) Xét \(\Delta\)AHB và \(\Delta\)DHB có:
^AHB = ^DHB ( 1v )
HA = HD ( giả thiết )
MH chung
=> \(\Delta\)AHB = \(\Delta\)DHB ( c.g.c)
b) Từ (a) => ^ABH = ^DHB => BH là phân giác ^ABD
Vì \(\Delta\)ABC nhọn => H nằm trong đoạn BC
=> BC là phân giác ^ABD
c) NF vuông BC
AH vuông BC
=> NF // AH
=> ^NFM = ^HAM ( So le trong )
Lại có: ^HMA = NMF ( đối đỉnh ) và MA = MF ( giả thiết )
=> \(\Delta\)NFM = \(\Delta\)HAM ( g.c.g)
=> NF = AH ( 2)
Từ ( a) => AH = HD ( 3)
Từ (2) ; (3) => NF = HD