Tìm các số nguyên (x,y) thỏa mãn x²+xy-3y-5x+3=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
11=1x11=11x1=-1x-11=-11x-1
TH1:
2x-1=1 y+4=11
2x=2 y=7
x=1
TH2:
2x-1=11 y+4=1
2x=12 y=-5
x=6
TH3:
2x-1=-1 y+4=-11
2x=-2 y=-15
x=-1
TH4:
2x-1=-11 y+4=-1
2x=-10 y=-5
x=-5
4:
(x+1)(y-2)=5
=>\(\left(x+1;y-2\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(0;7\right);\left(4;3\right);\left(-2;-3\right);\left(-6;1\right)\right\}\)
xy -3y = -5
y ( x -3 ) = -5
suy ra y=5 ;x = 2
hoặc y = -5 ; x = 4
\(xy+2x-3y=1\\ \Rightarrow x\left(y+2\right)-3y-6=1-6\\ \Rightarrow x\left(y+2\right)-3\left(y+2\right)=-5\\ \Rightarrow\left(x-3\right)\left(y+2\right)=-5\)
Ta có bảng:
x-3 | -5 | -1 | 1 | 5 |
y+2 | 1 | 5 | -5 | -1 |
x | -2 | 2 | 4 | 8 |
y | -1 | 3 | -7 | -3 |
Vậy \(\left(x,y\right)\in\left\{\left(-2;-1\right);\left(2;3\right);\left(4;-7\right);\left(8;-3\right)\right\}\)
Lời giải:
$2x-xy+3y=9$
$\Rightarrow x(2-y)+3y=9$
$\Rightarrow x(2-y)-3(2-y)=3$
$\Rightarrow (2-y)(x-3)=3$
Do $x,y$ là số nguyên nên $2-y, x-3$ cũng là số nguyên. Mà tích của chúng bằng 3 nên ta có các TH sau:
TH1: $2-y=1, x-3=3\Rightarrow y=1, x=6$ (tm)
TH2: $2-y=-1, x-3=-3\Rightarrow y=3; x=0$ (loại do $x$ nguyên dương)
TH3: $2-y=3, x-3=1\Rightarrow y=-1$ (loại do $y$ nguyên dương)
TH4: $2-y=-3; x-3=-1\Rightarrow y=5; x=2$ (thỏa mãn)
\(x^2+xy-3y-5x+3=0\)(*)
\(\Leftrightarrow x^2+\left(y-5\right).x+3-3y=0\)
Coi đây là pt bậc 2 ẩn x
Ta có:
\(\Delta=\left(y-5\right)^2-4.1\left(3-3y\right)\\ =y^2-10y+25-12+12y\\ =y^2+2y+13\)
Để pt có nghiệm nguyên thì Δ là số chính phương
\(\text{Đặt}y^2+2y+13=k^2\left(k\in N\right)\\ \Rightarrow\left(y^2+2y+1\right)-k^2+12=0\\ \Rightarrow\left(y+1\right)^2-k^2=-12\\ \Rightarrow\left(y-k+1\right)\left(y+k+1\right)=-12\)
Vì y, k ∈ N\(\Rightarrow\left\{{}\begin{matrix}y-k+1,y+k+1\in Z\\y-k+1,y+k+1\inƯ\left(-12\right)\\y-k+1< y+k+1\end{matrix}\right.\)
Ta có bảng:
Với y=1 thay vào (*) ta tìm được \(\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
Với y=-1 thay vào (*) ta không tìm được x nguyên
Với y=-3 thay vào (*) ta tìm được \(\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)
Vậy \(\left(x,y\right)\in\left\{\left(0;1\right);\left(4;1\right);\left(2;-3\right);\left(6;-3\right)\right\}\)