Số học sinh của ba lớp 7A 7B 7C lần lượt là 28 35 42 học sinh hưởng ứng phong trào tết trồng cây cả ba lớp trồng trồng được 150 cây hãy tính số cây xanh mà mỗi lớp trồng được biết rằng mỗi cây xanh của mỗi lớp tỉ lệ thuận với học sinh của ba lớp lớp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cây mỗi lớp 7A,7B,7C trồng được lần lượt là a,b,c (a,b,c >0)
Vì số cây trồng được tỉ lệ thuận với số học sinh mỗi lớp nên :\(\dfrac{a}{35}=\dfrac{b}{42}=\dfrac{c}{28}\)
Áp dụng tính chất DTSBN :
\(\dfrac{a}{35}=\dfrac{b}{42}=\dfrac{c}{28}=\dfrac{a-c}{35-28}=\dfrac{14}{7}=2\)
\(\Rightarrow\left\{{}\begin{matrix}a=35.2=70\\b=42.2=84\\c=28.2=56\end{matrix}\right.\)
Vậy ...
- Gọi số cây lớp 7A, 7B, 7C trồng được lần lượt là: x, y, z (\(x,y,z\in N\)*)
- Theo bài ra, ta có: \(x-z=14\)
- Vì số cây trồng được tỉ lệ thuận với số học sinh của lớp nên ta có:
\(\dfrac{x}{35}=\dfrac{y}{42}=\dfrac{z}{28}\)
- Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{35}=\dfrac{y}{42}=\dfrac{z}{28}=\dfrac{x-z}{35-28}=\dfrac{14}{7}=2\)
\(\rightarrow\left\{{}\begin{matrix}\dfrac{x}{35}=2\to x=70\\\dfrac{y}{42}=2\to y=84\\\dfrac{z}{28}=2\to z=56\end{matrix}\right.\)
Vậy số cây lớp 7A, 7B, 7C trồng được lần lượt là: \(70;84;56\) cây
Gọi số cây ba lớp trồng được là \(x;y;z\)
\(\frac{x}{7}=\frac{y}{8}=\frac{z}{9}=x+y+z=120\)
Theo tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{7}+\frac{y}{8}+\frac{z}{9}=\frac{120}{24}=5\)
Từ đó ta có :
\(\frac{x}{7}=5=x=5.7=35\)
\(\frac{y}{8}=5=y=5.8=40\)
\(\frac{z}{9}=5=z=5.9=45\)
Vậy
Gọi số cây ba lớp trồng được là x;y;zx;y;z
\frac{x}{7}=\frac{y}{8}=\frac{z}{9}=x+y+z=120
7
x
=
8
y
=
9
z
=x+y+z=120
Theo tính chất dãy tỉ số bằng nhau ta có :
\frac{x}{7}+\frac{y}{8}+\frac{z}{9}=\frac{120}{24}=5
7
x
+
8
y
+
9
z
=
24
120
=5
Từ đó ta có :
\frac{x}{7}=5=x=5.7=35
7
x
=5=x=5.7=35
\frac{y}{8}=5=y=5.8=40
8
y
=5=y=5.8=40
\frac{z}{9}=5=z=5.9=45
9
z
=5=z=5.9=45
Vậy 3 lớp 7A, 7B, 7C trồng được số cây lần lượt là 35, 40, 45 cây
Gọi số cây được trồng ở lớp $7A;7B;7C$ là $x,y,z$
Vì $y=20:21:y:z=7:9=21:27$, ta có:
$\dfrac{x}{20}=\dfrac{y}{21}=\dfrac{z}{27}=\dfrac{x+z+y}{20+21+27}=\dfrac{408}{68}=6$
Ta được: $x=6.20=120:y=6.21=126:z=6.27=162$
Lớp $7A$: $120:3=40$(cây)
Lớp $7B$: $126:3=42$(cây)
Lớp $7C$: 162:3=54$(cây)
Bài 4:
a: Xét ΔBAM và ΔCAM có
AB=AC
\(\widehat{BAM}=\widehat{CAM}\)
AM chung
Do đó: ΔBAM=ΔCAM
Gọi số cây 7A,7B,7C trồng đc lần lượt là a,b,c(cây;a,b,c∈N*)
Áp dụng tc dtsbn:
\(\dfrac{a}{4}=\dfrac{b}{6}=\dfrac{c}{8}=\dfrac{a+b+c}{4+6+8}=\dfrac{180}{18}=10\\ \Rightarrow\left\{{}\begin{matrix}a=40\\b=60\\c=80\end{matrix}\right.\)
Vậy ...
Gọi số cây lớp 7A,7B,7C trồng được lần lượt là : a,b,c ( a,b,c thuộc N* )
Do số cây trồng được 3 lớp 7A,7B,7C tỉ lệ với 4,6,8 nên ta có :
\(\dfrac{a}{4}=\dfrac{b}{6}=\dfrac{c}{8}=\dfrac{a+b+c}{4+6+8}=\dfrac{180}{18}=10\) ( t/c dãy tỉ số bằng nhau )
=> a = 10 . 4 = 40 cây
b = 10 . 6 = 60 cây
c = 10 . 8 = 80 cây
Bài 1:
Gọi số học sinh lần lượt của lớp 7A và 7B lần lượt là a và b
Theo đề ta có
\(\frac{a}{b}=\frac{8}{9}\) \(\Rightarrow\) \(\frac{a}{8}=\frac{b}{9}\) và b - a = 5 (7A ít hơn 7B 5 học sinh)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
=> \(\frac{a}{8}=\frac{b}{9}=\frac{b-a}{9-8}=5\)
=> \(\frac{a}{8}=5\) \(\Rightarrow\) \(a=8\cdot5=40\)
=> \(\frac{b}{9}=5\) \(\Rightarrow\) \(b=9\cdot5=45\)
Vậy số học sinh lớp 7A là 40 học sinh
Số học sinh lớp 7A là 45 học sinh
Gọi số cây trồng của lớp 7A, 7B, 7C, 7D lần lượt là a, b, c,d
Theo đề ta có:
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{d}{6}\) và b - a = 5 (lớp 7A trồng ít hơn 7B 5 cây)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{d}{6}=\frac{b-a}{4-3}=5\)
=> \(\frac{a}{3}=5\) => a = 5 . 3 = 15
=> \(\frac{b}{4}=5\) => b = 4 . 5 = 20
=> \(\frac{c}{5}=5\) => c = 5 . 5 = 25
=> \(\frac{d}{6}=5\) => d = 6 . 5 = 30
Vậy số cây lớp 7A trồng được là: 15 cây
số cây lớp 7B trồng được là: 20 cây
số cây lớp 7C trồng được là: 25 cây
số cây lớp 7D trồng được là: 30 cây
Gọi số cây trồng được của lớp 7A,7B,7C là a,b,c(cây)(a,b,c∈N*)
Áp dụng t/c dtsbn:
\(\dfrac{a}{4}=\dfrac{b}{6}=\dfrac{c}{3}=\dfrac{a+c-b}{4+3-6}=\dfrac{12}{1}=12\)
\(\Rightarrow\left\{{}\begin{matrix}a=12.4=48\\b=12.6=72\\c=12.3=36\end{matrix}\right.\)
Vậy....
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{4}=\dfrac{b}{5}=\dfrac{c}{6}=\dfrac{a+b+c}{4+5+6}=\dfrac{150}{15}=10\)
Do đó: a=40; b=50; c=60