Tính giá trị của đa thức:
A=x19-12x18+12x17-12x16+...+12x-1 tại x=11
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,=5\left(x^2+2xy+y^2\right)-10y^2+5=5\left(x+y\right)^2-10y^2+5\\ =5\left(1+2\right)^2-10\cdot4+5=45-40+5=10\\ b,=7\left(x-y\right)-\left(x-y\right)^2=\left(x-y\right)\left(7-x+y\right)\\ =\left(2-2\right)\left(7-2+2\right)=0\)
b: \(=7\left(x-y\right)-\left(x-y\right)^2\)
\(=\left(x-y\right)\left(7-x+y\right)=0\)
a, Thay x=2 vào A, ta được:
\(A\left(2\right)=3.2^3+5-6.2+5.2^2=37\)
Vậy A= 37 khi x=2.
b,
\(A\left(x\right)+B\left(x\right)=\left(3x^3+5-6x+5x^2\right)+\left(4x^2+6x-2x^7-9\right)\\ =-2x^7+3x^3+9x^2-4\)
Đề phải là x^4-12x^3+12x^2-12x+111 tại x=11.
x=11
=>x+1=12
thay x+1=12 vào x^4-12x^3+12x^2-12x+111 ta được:
x4-(x+1)x3+(x+1)x2-(x+1)x+111
=x4-x4-x3+x3+x2-x2-x+111
=111-x
=111-12
=99
x+1=12
thay 'x+1=12 vào x^4-12x^3+12x^2-12x+111 ta có
x^4-(x+1)x^3+(x+1)x^2-(x+1)x+111
=x^4-x^4-x^3+x^3+x^2-x^2-x+111
=111-x
=111-11
=100
x=11
nên x+1=12
\(x^4-12x^3+12x^2-12x+111\)
\(=x^4-x^3\left(x+1\right)+x^2\left(x+1\right)-x\left(x+1\right)+111\)
\(=x^4-x^4-x^3+x^3+x^2-x^2-x+111\)
=111-x
=111-11=100
Tại x=11
\(\Rightarrow f\left(x\right)=x^{17}-\left(x+1\right)x^{16}+\left(x+1\right)x^{15}-...+\left(x+1\right)x-1\)
\(f\left(x\right)=x^{17}-x^{17}-x^{16}+x^{16}+x^{15}-...+x^2+x-1\)
\(f\left(x\right)=x-1\)
\(f\left(x\right)=10\)
\(x=11\Leftrightarrow12=x+1\)
Mà \(f\left(x\right)=x^{17}-12x^{16}+12x^{15}-12x^{14}+........+12x-1\)
\(\Leftrightarrow f\left(x\right)=x^{17}-\left(x+1\right)x^{16}+\left(x+1\right)x^{15}-.......+\left(x+1\right)x-1\)
\(\Leftrightarrow f\left(x\right)=x^{17}-x^{17}-x^{16}+x^{16}+x^{15}-.....+x^2+x-1\)
\(\Leftrightarrow f\left(x\right)=x-1\)
Mà \(x=11\)
\(\Leftrightarrow f\left(11\right)=11-1=10\)
Vậy \(f\left(11\right)=10\)
a: \(A=\dfrac{x+1}{x\left(3-x\right)}:\left(\dfrac{3+x}{3-x}-\dfrac{3-x}{3+x}-\dfrac{12x^2}{x^2-9}\right)\)
\(=\dfrac{x+1}{x\left(3-x\right)}:\left(\dfrac{-\left(x+3\right)}{x-3}+\dfrac{x-3}{x+3}-\dfrac{12x^2}{\left(x-3\right)\left(x+3\right)}\right)\)
\(=\dfrac{x+1}{x\left(3-x\right)}:\dfrac{-x^2-6x-9+x^2-6x+9-12x^2}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{-\left(x+1\right)}{x\left(x-3\right)}\cdot\dfrac{\left(x-3\right)\left(x+3\right)}{-12x^2-12x}\)
\(=\dfrac{-\left(x+1\right)\cdot\left(x+3\right)}{-12x^2\left(x+1\right)}=\dfrac{x+3}{12x^2}\)
b: Ta có: |2x-1|=5
=>2x-1=5 hoặc 2x-1=-5
=>x=-2
Thay x=-2 vào A, ta được:
\(A=\dfrac{-2+3}{12\cdot\left(-2\right)^2}=\dfrac{1}{48}\)
c: Để \(A=\dfrac{2x+1}{x^2}\) thì \(\dfrac{x+3}{12x^2}=\dfrac{2x+1}{x^2}\)
=>x+3=24x+12
=>24x+12=x+3
=>23x=-9
hay x=-9/23
d: Để A<0 thì x+3<0
hay x<-3