Cho ΔABC vuông tại A có góc B = 30°. Vẽ AK ┴ BC (K thuộc BC). Trên tia đối của tia KA lấy điểm M sao cho KA=KM
a) Chứng minh ΔKAB=ΔKMB. Tính góc MAB
b) Trên tia KB lấy điểm D sao cho KD=KC. Tia MD cắt AB tại N. Chứng minh MN ┴ AB
c) So sánh MD + DB với AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBKA vuông tại K và ΔBKM vuông tại K có
BK chung
KA=KM
=>ΔBKA=ΔBKM
=>góc ABK=góc MBK
Xét ΔBAC và ΔBMC có
BA=BM
góc ABC=góc MBC
BC chung
=>ΔBAC=ΔBMC
=>góc BMC=90 độ
b: Xét tứ giác ACMD có
K là trung điểm chung của AM và CD
=>ACMD là hình bình hành
=>MD//AC
=>MD vuông góc AB
a: Xét ΔKAB vuông tại K và ΔKMB vuông tại K có
KA=KM
KB chung
Do đó: ΔKAB=ΔKMB
b: Xét tứ giác ACMD có
K là trung điểm chung của AM và CD
=>ACMD là hình bình hành
=>MD//AC
=>MN//AC
Ta có: MN//AC
AB\(\perp\)AC
Do đó: MN\(\perp\)AB
Mik làm được phần 1 thôi nhé !! Thông cảm nha !!!
a) Xét tam giác KAB và tam giác KMB có : KA = KM ( GT )
BK chung ( GT )
Góc AKB = Góc MKB ( GT )
=> Tam giác KAB = Tam giác KMB ( c.g.c )
Do AK_I_BC => Góc AKB = 90o , mà góc B = 30o => góc MAB = 60o
a: BC=15cm
b: Xét ΔABM có
BH là đường cao
BH là đường trung tuyến
Do đó: ΔABM cân tại B
c: Xét tứ giác ABNC có
K là trung điểm của BC
K là trung điểm của AN
Do đó: ABNC là hình bình hành
Suy ra: CN=AB
mà AB=BM
nên CN=BM
a)Xét △ABD và △CED có
AD=DC ( vì D là trung điểm của AC)
góc ADB=góc CDE( 2 góc đối đỉnh)
BD=ED ( giả thiết)
=> △ABD = △CED(c-g-c)
b)ta có KD ⊥AC => góc KDA=góc KDC =90 độ
Xét △ADK (góc KDA=90 độ)và △CDK (góc KDC=90 độ)có
KD : cạnh chung
AD=CD(Vì D là trung điểm của AC)
=> △ADK=△CDK(2 cạnh góc vuông )
=> AK=CK( 2 cạnh tương ứng)
vậy AK=CK
c) Xét △BDk và △EDH có
BD=DE(giả thiết )
góc BDK=góc EDH(2 góc đối đỉnh)
DK=DH( giả thiết)
=>△BDK =△EDH (c-g-c)
=>gócKBD=góc DEH( 2 góc tương ứng) hay góc CBE =góc BEH mà 2 góc này kà 2 góc so le trong của đường thẳng BE cắt 2 đương thẳng BC và EH
=>BC//EH
Xét △KDC và△HDA có
AD=DC (Vì D là trung điểm của AC)
góc KDC= góc HDA(2 góc đối đỉnh )
KD=DH (giả thiết)
=>△KDC =△HDA(c-g-c)
=> góc KCD = góc DAH( 2 góc tương ứng) hay góc BCA= góc CAH mà 2 góc này là 2 góc so le trong của đường thẳng AC cắt 2 đường thẳng BC và AH
=>BC //AH
Vì BC//EH
mà BC//AH => 3 điểm A,H,E thẳng hàng
Vậy 3 điểm A,H,E thẳng hàng
a)Xét △ABD và △CED có
AD=DC ( vì D là trung điểm của AC)
góc ADB=góc CDE( 2 góc đối đỉnh)
BD=ED ( giả thiết)
=> △ABD = △CED(c-g-c)
b)ta có KD ⊥AC => góc KDA=góc KDC =90 độ
Xét △ADK (góc KDA=90 độ)và △CDK (góc KDC=90 độ)có
KD : cạnh chung
AD=CD(Vì D là trung điểm của AC)
=> △ADK=△CDK(2 cạnh góc vuông )
=> AK=CK( 2 cạnh tương ứng)
vậy AK=CK
c) Xét △BDk và △EDH có
BD=DE(giả thiết )
góc BDK=góc EDH(2 góc đối đỉnh)
DK=DH( giả thiết)
=>△BDK =△EDH (c-g-c)
=>gócKBD=góc DEH( 2 góc tương ứng) hay góc CBE =góc BEH mà 2 góc này kà 2 góc so le trong của đường thẳng BE cắt 2 đương thẳng BC và EH
=>BC//EH
Xét △KDC và△HDA có
AD=DC (Vì D là trung điểm của AC)
góc KDC= góc HDA(2 góc đối đỉnh )
KD=DH (giả thiết)
=>△KDC =△HDA(c-g-c)
=> góc KCD = góc DAH( 2 góc tương ứng) hay góc BCA= góc CAH mà 2 góc này là 2 góc so le trong của đường thẳng AC cắt 2 đường thẳng BC và AH
=>BC //AH
Vì BC//EH
mà BC//AH => 3 điểm A,H,E thẳng hàng
Vậy 3 điểm A,H,E thẳng hàng
a)-Xét tam giác KAB và tam giác KMB có:KA=KM(GT)
BK chung(GT)
góc AKB=gócMKB(GT)
=>tam giác KAB=tam giác KMB(c.g.c)
-Do AK_I_BC=>góc AKB=90 độ,mà góc B=30 độ=>góc MAB=60 độ