Cho tam giác ABC vuông tại A (AB > AC), có đường cao AH. Vẽ đường tròn tâm C, bán kính CA. Đường thẳng AH cắt đường tròn (O) tại điểm thứ hai D.
a) Chứng minh BD là tiếp tuyến của đường tròn (O).
b) Qua C kẻ đường thẳng vuông góc với BC cắt các tia BA, BD thứ tự tại E, F. Trên cung nhỏ AD của (O) lấy điểm M bất kỳ, qua M kẻ tiếp tuyến với (O) cắt AB, BD lần lượt tại P. Q. Chứng minh: \(2\sqrt{PE.QF}=EF\)