K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2021

a) có tất cả số hạng là:

(20042-12):10+1=2004

tổng là:

\(\dfrac{\text{(20042+12).2004}}{2}\)\(=20094108\)

31 tháng 7 2018

nếu \(A⋮b\) mà \(A⋮̸b^2\)\((A\) là số nguyên tố\()\)

\(\Rightarrow A\) không là số chính phương

tương tự vì A \(⋮5\) mà \(A⋮̸25\)

vây A ko phải là số chính phương

1/ Xét \(\left(n^{1010}\right)^2=n^{2020}< n^{2020}+1=\left(n^{1010}+1\right)^2-2n^{1010}< \left(n^{1010}+1\right)^2\)

Vì \(n^{2020}+1\)nằm ở giữa 2 số chính phương liên tiếp là \(\left(n^{1010}\right)^2\)và \(\left(n^{1010}+1\right)^2\)nên không thể là số chính phương.

2/ Mình xin sửa đề là 1 tí đó là tìm \(n\inℤ\)để A là số chính phương nha bạn, vì A hoàn toàn có thể là số chính phương

\(A>n^4+2n^3+n^2=\left(n^2+n\right)^2,\forall n\inℤ\)

\(A< n^4+n^2+9+2n^3+6n^2+6n=\left(n^2+n+3\right)^2,\forall n\inℤ\)

Vì A bị kẹp giữa 2 số chính phương là \(\left(n^2+n\right)^2,\left(n^2+n+3\right)^2\)nên A là số chính phương khi và chỉ khi:

+) \(A=\left(n^2+n+1\right)^2\Rightarrow n^4+2n^3+2n^2+n+7=n^4+n^2+1+2n^3+2n^2+2n\)

\(\Leftrightarrow n^2+n-6=0\Leftrightarrow\orbr{\begin{cases}n=2\\n=-3\end{cases}}\)

+) \(A=\left(n^2+n+2\right)^2\Rightarrow n^4+2n^3+2n^2+n+7=n^4+n^2+4+2n^3+4n^2+4n\)

\(\Leftrightarrow3n^2+3n-3=0\Leftrightarrow x=\frac{-1\pm\sqrt{5}}{2}\notinℤ\)---> Với n=-3;2 thì A là số chính phương.

3/ Bằng phản chứng giả sử \(n^3+1\)là số chính phương:

---> Đặt: \(n^3+1=k^2,k\inℕ^∗\Rightarrow n^3=k^2-1=\left(k-1\right)\left(k+1\right)\)

Vì n lẻ nên (k-1) và (k+1) cùng lẻ ---> 2 số lẻ liên tiếp luôn nguyên tố cùng nhau

Lúc này (k-1) và (k+1) phải là lập phương của 2 số tự nhiên khác nhau

---> Đặt: \(\hept{\begin{cases}k-1=a^3\\k+1=b^3\end{cases},a,b\inℕ^∗}\)

Vì \(k+1>k-1\Rightarrow b^3>a^3\Rightarrow b>a\)---> Đặt \(b=a+c,c\ge1\)

Có \(b^3-a^3=\left(k+1\right)-\left(k-1\right)\Leftrightarrow\left(a+c\right)^3-a^3=2\Leftrightarrow3ca^2+3ac^2+c^3=2\)

-----> Quá vô lí vì \(a,c\ge1\Rightarrow3ca^2+3ac^2+c^3\ge7\)

Vậy mâu thuẫn giả thiết ---> \(n^3+1\)không thể là số chính phương với n lẻ.

19 tháng 12 2020

Đặt A=n!+2003
Với n=0⇒A=2004 không phải số chính phương
Với n=1,2,3,4,5 ta có điều tương tự
Với n>5⇒n! tận cùng là 0
⇒A tận cùng là 3
Vậy A không là số chính phương với mọi n

7 tháng 7 2016

Do \(n+1\)không chia hết cho 4 nên \(n=4k+r\in\left\{0;2;3\right\}\)

Ta có : \(7^4-1=2400\div100\)

Ta viết : \(7^n+2=7^{4k+r}+2=7^r\left(7^{4k}-1\right)+7^r+2\)

Vậy hai chữ số tận cùng của \(7^n+2\) cũng chính là hai chữ số tận cùng của \(7^r+2\left(r=0;2;3\right)\) nên chỉ có thể \(03;51;45\)theo tính chất 5 thì rõ ràng \(7^n+2\) không thể là số chính phương khi n không chia hết cho 4 

7 tháng 7 2016

Do n+1 không chia hết cho 4 nên n=4k + r \(r\in\left\{0;2;3\right\}\)

Ta có : \(7^4-1=2400:100\)

Ta viết:\(7^n+2=7^{4k+r}+2=7^r\left(7^{4k}-1\right)+7^r+2\)

Vậy hai chữ số tận cùng của 7^n+2 cũng chính là hai chữ số tận cùng của 7^r+2 (r=0;2;3) nên chỉ có thể 03,51,45 theo tính chất 5 thì rõ ràng 7^n+2 không thể là số chính phương khi n không chia hết cho 4