K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Xét ΔIBC có \(\widehat{IBC}=\widehat{ICB}\)

nên ΔIBC cân tại I

2: Xét ΔABD và ΔACE có

\(\widehat{A}\) chung

AB=AC

\(\widehat{ABD}=\widehat{ACE}\)

Do đó: ΔABD=ΔACE

Suy ra: BD=CE

12 tháng 5 2015

  A B C E D O

Ta có: OE=\(\frac{1}{3}CE\) ; OD=\(\frac{1}{3}BD\) mà CE=BD nên OE=OD

           \(OB=\frac{2}{3}BD\)\(OC=\frac{2}{3}CE\) mà BD=CE nên OB=OC

   \(X\text{ét}\) \(\Delta OBE\) \(=\Delta OCD\) vì OE=OD ; OB=OC; góc EOB=góc DOC (đối đỉnh)

  -> góc OBE= góc OCD  (góc tương ứng) (1)

 Vì OB =OC nên tam giác OBC cân tại B

-> góc OBC=góc OCB ( 2 góc ở đáy) (2)

 Từ (1) và (2) suy ra : góc OBE+ góc OBC = góc OCD+ góc OCB

         Hay góc ABC = góc ACB

Do đó tam giác ABC cân tại A 

   

           

 

 

a: Xét ΔABD và ΔAMD có 

AB=AM

\(\widehat{BAD}=\widehat{MAD}\)

AD chung

Do đó: ΔABD=ΔAMD

Suy ra: BD=MD

b: Xét ΔBDN và ΔMDC có 

\(\widehat{DBN}=\widehat{DMC}\)

DB=DM

\(\widehat{BDN}=\widehat{MDC}\)

Do đó: ΔBDN=ΔMDC

c: Ta có: ΔBDN=ΔMDC

nên BN=MC

Ta có: AB+BN=AN

AM+MC=AC
mà AB=AM

và BN=MC

nên AN=AC
hay ΔANC cân tại A