Cho tam giác ABC vuông tại A, B=30độ. Trên cạnh BC lấy M sao cho AM=BM. Chứng minh tam giác AMC đều.c
ABCvuông tại A, 30B=. Trên cạnh B
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC vuông tại A có \(\widehat{ABC}+\widehat{ACB}=90^0\)
=>\(\widehat{ABC}=90^0-30^0=60^0\)
Xét ΔBAM có BA=BM và \(\widehat{ABM}=60^0\)
nên ΔBAM đều
b: Ta có: ΔMAB đều
=>\(\widehat{MAB}=60^0\)
Ta có: \(\widehat{MAB}+\widehat{MAC}=\widehat{BAC}\)
=>\(\widehat{MAC}+60^0=90^0\)
=>\(\widehat{MAC}=30^0\)
Xét ΔMAC có \(\widehat{MAC}=\widehat{MCA}\left(=30^0\right)\)
nên ΔMAC cân tại M
=>MA=MC
mà MB=MA
nên MB=MC
=>M là trung điểm của BC
=>\(AM=MB=\dfrac{1}{2}BC\)
c: Ta có: ΔMAC cân tại M
mà MD là đường phân giác
nên MD\(\perp\)AC
Ta có: MD\(\perp\)AC
AB\(\perp\)AC
Do đó: MD//AB
a) Gọi chân đường trung trực của AC là D
Xét ∆vuông ADM và ∆ vuông CDM ta có :
AC = CD ( MD là trung trực AC )
MD chung
=> ∆ADM = ∆CDM (2 cạnh góc vuông )
=> AM = CN
=> ∆AMC cân tại M
=> ACM = MAC (1)
Xét ∆AMC có :
AMC + ACM + MAC = 180°
=> AMC = 180° - ( MAC + ACM )
=> AMC = 180° - 2ACM (2)
Xét ∆ABC có :
BAC + ACB + ABC = 180°
=> BAC = 180° - ( ACB + ABC )
=> BAC = 180° - 2ACB (3)
Từ (1)(2)(3) ta có : BAC = AMC
b) Ta có :
ABM = 180° - ABC ( kề bù )(3)
CAN = 180° - MAC ( kề bù )(4)
Mà MAC = ACB = ABC ( 5 )
Từ (3)(4)(5) ta có : ABM = CAN
Xét ∆ABM và ∆CAN ta có :
AB = AC
BM = AN
ABM = CAN
=> ∆ABM = ∆CAN (c.g.c)
=> AM = CN
Mà AM = CM (cmt)
=> CM = CN
Xét ΔABM có : BA=BM
=> ΔABM cân tại B
=> \(\widehat{BAM}=\widehat{B}=30^o\)
=> \(\widehat{MAC}=90^o-30^o=60^o\)
\(\widehat{C}=90^o-\widehat{B}=60^o\)
ΔAMC có 2 góc \(60^o\)
=> ΔAMC là tam giác đều
cảm ơn bạn nhiều !!!