Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC vuông tại A có \(\widehat{ABC}+\widehat{ACB}=90^0\)
=>\(\widehat{ABC}=90^0-30^0=60^0\)
Xét ΔBAM có BA=BM và \(\widehat{ABM}=60^0\)
nên ΔBAM đều
b: Ta có: ΔMAB đều
=>\(\widehat{MAB}=60^0\)
Ta có: \(\widehat{MAB}+\widehat{MAC}=\widehat{BAC}\)
=>\(\widehat{MAC}+60^0=90^0\)
=>\(\widehat{MAC}=30^0\)
Xét ΔMAC có \(\widehat{MAC}=\widehat{MCA}\left(=30^0\right)\)
nên ΔMAC cân tại M
=>MA=MC
mà MB=MA
nên MB=MC
=>M là trung điểm của BC
=>\(AM=MB=\dfrac{1}{2}BC\)
c: Ta có: ΔMAC cân tại M
mà MD là đường phân giác
nên MD\(\perp\)AC
Ta có: MD\(\perp\)AC
AB\(\perp\)AC
Do đó: MD//AB
nhìn hình vẽ ta thấy \(\Delta ABM\) có BM = AM ( gt ) => \(\Delta ABM\) cân
ta có: \(\widehat{B}+\widehat{C}=90^O\) ( VÌ \(\Delta\) ABC là tam giác vuông tại A )
=> \(\widehat{B}+30^o=90^o\)
=> \(\widehat{B}=60^o\)
vì \(\Delta ABM\) cân => \(\widehat{B}=\widehat{A_1}=60^o\)
=> \(\widehat{M_1}=60^o\) ( vì góc B = góc A1 = 60o )
=> \(\Delta AMB\) là \(\Delta\) đều ( vì \(\widehat{B}=\widehat{A_1}=\widehat{M_1}=60^o\) )
vì góc A vuông nên ta có:
\(\widehat{A_1}+\widehat{A_2}=90^o\)
=> 60o + \(\widehat{A_2}\) = 90o
=> \(\widehat{A_2}=30^o\)
ta thấy \(\Delta AMC\) có \(\widehat{C}=\widehat{A_2}=30^o\) => \(\Delta AMC\) cân
=> AM = MC
ta có: BM + MC = 2AM
=> BC = 2AM
=> AM = 1/2BC ( đpcm)
vậy AM = 1/2 .BC
c) Δ ABK = Δ ADK (câu b) => BK = DK (2 cạnh tương ứng)
và ABK = ADK (2 góc tương ứng)
Mà ABK + KBE = 180o (kề bù)
ADK + KDC = 180o (kề bù)
nên KBE = KDC
Xét Δ KBE và Δ KDC có:
BE = CD (gt)
KBE = KDC (cmt)
BK = DK (cmt)
Do đó, Δ KBE = Δ KDC (c.g.c)
=> BKE = DKC (2 góc tương ứng)
Lại có: BKD + DKC = 180o (kề bù)
Do đó, BKE + BKD = 180o
=> EKD = 180o
hay 3 điểm E, K, D thẳng hàng (đpcm)