Chứng minh rằng:
\(S=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{20}}<2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{20}}\)
\(\Rightarrow2S=1+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{19}}\)
\(\Rightarrow2S-S=\left(1+\frac{1}{2^2}+...+\frac{1}{2^{19}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{20}}\right)\)
\(S=1-\frac{2}{2^{20}}\)
\(\Rightarrow S< 1\left(đpcm\right)\)
Ta có :\(S=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{20}}\)
\(S=\frac{1\cdot2^{19}}{2\cdot2^{19}}+\frac{1\cdot2^{18}}{2^2\cdot2^{18}}+\frac{1\cdot2^{17}}{2^3\cdot2^{17}}+...+\frac{1\cdot2}{2^{19}\cdot2}+\frac{1}{2^{20}}\)
\(S=\frac{2^{19}}{2^{20}}+\frac{2^{18}}{2^{20}}+\frac{2^{17}}{2^{20}}+...+\frac{2}{2^{20}}+\frac{1}{2^{20}}\)
\(S=\frac{2^{19}+2^{18}+2^{17}+...+2^1+1}{2^{20}}\)
\(S=\frac{2^0+2^1+2^2+...+2^{19}}{2^{20}}\)
Xét: Gọi \(N=2^0+2^1+2^2+...+2^{19}\)
\(2\cdot N=2^1\cdot2^2\cdot2^3\cdot...\cdot2^{20}\)
\(2\cdot N-N=\left(2^1+2^2+2^3+...+2^{20}\right)-\left(2^0+2^1+2^2+...+2^{19}\right)\)
\(N=2^{20}-2^0\)
Thay N vào S, ta có :
\(S=\frac{2^{20}-2^0}{2^{20}}\)
\(S=\frac{2^{20}}{2^{20}}-\frac{1}{2^{20}}\)
\(S=1-\frac{1}{2^{20}}\)
Vì \(1-\frac{1}{2^{20}}< 1\Rightarrow S< 1\left(Đpcm\right).\)
Vậy : \(S< 1.\)
Ta có: S = 1/ 2 + 1/ 2^2 + 1/ 2^3 + ... + 1/ 2^20
Nên 2S = 1 + 1/2 + 1 / 2^2 + 1/ 2^3 + .... + 1/ 2^19
Do đó 2S - S = 1 - 1/ 2^20 < 1
Vậy S < 1
ta có
S = \(\frac{1}{2}\)+ \(\frac{1}{2^2}\)+ \(\frac{1}{2^3}\)+ .....+\(\frac{1}{20^{20}}\)
2S= 1 + \(\frac{1}{2}\)+ \(\frac{1}{2^2}\)+ \(\frac{1}{2^3}\)+ .....+\(\frac{1}{2^{19}}\)
S = 2S-S= 1 - \(\frac{1}{2^{19}}\)<1
Vậy S < 1
^_^ chúc bn học tốt
\(S=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1+1-\frac{1}{50}\)
\(=2-\frac{1}{50}< 2\)
\(S=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)
\(=1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)
\(\Rightarrow S< 1+\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...\frac{1}{49\cdot50}\right)\)
\(S< 1+\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\right)\)
\(S< 1+\left(1-\frac{1}{50}\right)\)
Mà \(1-\frac{1}{50}< 1\Rightarrow1+\left(1-\frac{1}{50}\right)< 2\)( ĐPCM )
a)\(S=\left(\frac{1}{5}+\frac{1}{13}\right)+\left(\frac{1}{61}+\frac{1}{62}+\frac{1}{63}\right)<\left(\frac{1}{5}+\frac{1}{5}\right)+\left(\frac{1}{60}+\frac{1}{60}+\frac{1}{60}\right)=\frac{2}{5}+\frac{1}{20}=\frac{9}{20}<\frac{10}{20}=\frac{1}{2}\)b) \(2.S=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{19}}\)
=> 2S - S = \(\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{19}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{20}}\right)\)
=> S = \(1-\frac{1}{2^{20}}<1\) đpcm
Bài làm
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{20^2}\)
Ta có: \(\frac{1}{2.2}< \frac{1}{1.2};\frac{1}{3.3}< \frac{1}{2.3};\frac{1}{4.4}< \frac{1}{3.4};\frac{1}{20.20}< \frac{1}{19.20}\)
=> \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{20^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{19.20}\) (1)
Biến đổi vế phải, ta có:
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{19.20}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{19}-\frac{1}{20}\)
\(=\frac{1}{1}-\frac{1}{20}\)
\(=\frac{20}{20}-\frac{1}{20}\)
\(=\frac{19}{20}\)
Mà 19 < 20
=> \(\frac{19}{20}< 1\) (2)
Từ (1) và (2) => \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{20^2}< 1\)
Vậy A < 1 ( đpcm )
Bạn nhân S với 2
Lấy 2S-S=1-1/(2^20)
S=1/(2^20) nên < 2
Cần làm đầy đủ hơn thì bảo mình
Ta có : 1/2 < 1
1/2^2 < 1/2
..............
1/2^19 < 1/2^20
Suy ra 1/2+1/2^2+......+1/2^19<1+1/2+1/2^2+......+1/2^20
Suy ra 1/2+1/2^2+.......+1/2^19+1/2^20<1+1/2+1/2^2+.....+1/2^20+1/2^20
Suy ra S<S+1+1/2^20
Suy ra S<S+1+1/2^20<2
Suy ra S<2