Tim x,y.Thoa man 3^x=9^y-1 va 8y=2^x+8.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(\frac{x}{18}=\frac{y}{15},x-y=-30\)
\(\frac{x}{18}=\frac{y}{15}\)
\(\frac{x}{18}-\frac{y}{15}=0\)
\(-\frac{6y-5x}{90}=0\)
\(6y-5x=0\)
\(x-y=-30\)
\(-\left(y-x-30\right)=0\)
\(y-x-30=0\)
\(\Rightarrow x=-180;y=-150\)
=>x^2-y^2-xy-y^2=1
=>(x-y)(x+y)-y(x+y)=1
=>(x+y)*(x-2y)=1
=>(x+y;x-2y)=(1;1) hoặc (x+y;x-2y)=(-1;-1)
=>(x,y)=(1;0) hoặc (x,y)=(-1;0)
Vd: sqrt(2) : căn bậc 2 của 2
Mình không biết giải có đúng hay không, nhưng cũng xin góp ý.
pt <=> z=sqrt(2)*sqtr(sprt(2)*Y^3 - X^2 - X + 1) (với x, y, z nguyên)
Suy ra: z nguyên khi và chỉ khi z=2
<=> sqrt(2)*Y^3 - X^2 -X +1 - sqrt(2) = 0 (pt *) (với x, y nguyên)
Khi X nguyên: X^2 + X -1 cũng sẽ nguyên
Suy ra: Điều kiện cần để pt* đúng thì sqrt(2)*Y^3 - sqrt(2) cũng phải nguyên
<=> Y=1
Khi đó:
pt* <=> X^2 + X - 1 = 0 (x nguyên)
pt trên không có nghiệm nguyên.
Vậy: không tồn tại bộ số x, y, z nguyên thổa mãn phương trình đã cho.
\(\hept{\begin{cases}3x-y=2m+3\\x+2y=3m+1\end{cases}}\Leftrightarrow\hept{\begin{cases}6x-2y=4m+6\\x+2y=3m+1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=m+1\\y=m\end{cases}}\)khi đó: \(^{x^2+y^2=5\Leftrightarrow2m^2+2m+1=5\Leftrightarrow2m^2+2m-4=0\Leftrightarrow\orbr{\begin{cases}m=1\\m=-2\end{cases}}}\)