Cho 3 số a,b,c thỏa mãn a^2 + b^2 + ab +bc +ca <0.Cmr:a^2+b^2<c^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(0\le\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)(1)
theo đề bài:
\(a^2+b^2+ab+bc+ac< 0\)
=> \(2\left(a^2+b^2+ab+bc+ac\right)< 0\)
=> \(2a^2+2b^2+2ab+2bc+2ac< 0\)(2)
Từ (1); (2) =>\(2a^2+2b^2+2ab+2bc+2ac< \) \(a^2+b^2+c^2+2ab+2bc+2ac\)
=> \(a^2+b^2< c^2\)
cho 3 số a,b,c khác 0 thỏa mãn ab/a+b=bc/b+c=ca/c+a
tính giá trị của biểu thức M=ab+bc+ca/a^2+b^2+c^2
cho 3 số a, b, c hác 0 thỏa mãn ab/ (a+b) = bc/ (b+c) = ca/ (c+a)
Tính M = ab + bc + ca/ a2 + b2 + c2
\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
Tính M = ab + bc + ca/ a2 + b2 + c2
\(\Rightarrow\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ca}\)
\(\Rightarrow\frac{a}{ab}+\frac{b}{ab}=\frac{b}{bc}+\frac{c}{bc}=\frac{c}{ca}+\frac{a}{ca}\)
\(\Rightarrow\frac{1}{b}+\frac{1}{a}=\frac{1}{c}+\frac{1}{b}=\frac{1}{a}+\frac{1}{c}\)
\(\Rightarrow\hept{\begin{cases}\frac{1}{b}+\frac{1}{a}=\frac{1}{c}+\frac{1}{b}=\frac{1}{a}=\frac{1}{c}\\\frac{1}{c}+\frac{1}{b}=\frac{1}{a}+\frac{1}{c}\Rightarrow\frac{1}{b}=\frac{1}{a}\\\frac{1}{a}+\frac{1}{c}=\frac{1}{b}+\frac{1}{a}=\frac{1}{c}=\frac{1}{a}\end{cases}}\)
\(\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\Rightarrow a=b=c\)
\(\Rightarrow M=\frac{ab+bc+ca}{a^2+b^2+c^2}=\frac{1.1+1.1+1.1}{1^2+1^2+1^2}=\frac{3}{3}=1\)
Ta có \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
Mà \(a,b,c \ne0\) => \(ab,bc,ca \ne0\)
=> \(\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ca}\)
=> \(\frac{a}{ab}+\frac{b}{ab}=\frac{b}{bc}+\frac{c}{bc}=\frac{c}{ca}+\frac{a}{ca}\)
=> \(\frac{1}{b}+\frac{1}{a}=\frac{1}{c}+\frac{1}{b}=\frac{1}{a}+\frac{1}{c}\)
=> \(\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\)
=> \(a=b=c\)
Thay vào M ta có : \(M=\frac{ab+bc+ca}{a^2+b^2+c^2}=\frac{a.a+a.a+a.a}{a^2+a^2+a^2}=\frac{3a^2}{3a^2}=1\)
Vậy \(M=1\)
\(N=\dfrac{\left(ab\right)^3+\left(bc\right)^3+\left(ca\right)^3}{\left(ab\right)\left(bc\right)\left(ca\right)}\)
Đặt \(\left(ab;bc;ca\right)=\left(x;y;z\right)\Rightarrow x+y+z=0\Rightarrow N=\dfrac{x^3+y^3+z^3}{xyz}\)
\(N=\dfrac{x^3+y^3+z^3-3xyz+3xyz}{xyz}=\dfrac{\dfrac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]+3xyz}{xyz}=\dfrac{3xyz}{xyz}=3\)