Cho Tam Giác ABC , Có AB= AC . Gọi M là trung điểm của BC. A) chứng minh Tam giác ABM = Tam giác ACM B) Chứng minh AM vuông góc với BC C) Gọi I là trung điểm của AM . Trên tia BI lấy điểm H sao cho BI = IH . Chứng minh AH song song với BC D) Qua M kẻ đường thẳng song song với AC cắt đường thẳng AH tại K . Chứng minh A là trung điểm của HK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
*Tự vẽ hình
a) Xét tam giác ABM và ACM, có :
AB=AC(GT)
AM-cạnh chung
BM=MC(GT)
-> Tam giác ABM=ACM(c.c.c)
b) Do tam giác ABM=ACM (cmt)
-> \(\widehat{AMB}=\widehat{AMC}=90^o\)
-> AM vuông góc BC
c) Xét tam giác AEI và MBI, có :
\(\widehat{EAI}=\widehat{BMI}=90^o\)
\(\widehat{AIE}=\widehat{BIM}\left(đđ\right)\)
AI=IM(GT)
-> tam giác AEI=MBI(g.c.g)
-> AE=BM ( đccm)
d) Chịu. Tự làm nhe -_-'
#Hoctot
bạn tự vẽ hình
a, xét tam giác ABM và tam giác ACM có :
AB=AC (gt)
MB=MC (gt)
AM là cạch chung
suy ra tam giác ABM =tam giác ACN (c.c.c)
b, Vì tam giác ABM = tam giác ACN (câu a)
suy ra góc M1= góc M2 (2 góc tương ứng)
mà M1+M2=180 ( 2 góc kề bù)
suy ra : M1=M2= 90
suy ra AM vuông góc BC
c, Vì tam giác ABM = tam giác ACM (câu a)
suy ra : A1=A2 ( 2 góc tương ứng)
suy ra: AM là phân giác góc BAC
CM: a) Xét t/giác ABM và t/giác ACM
có AB = AC (gt)
BM = MC (gt)
AM : chung
=> t/giác ABM = t/giác ACM (c.c.c)
b) Ta có: t/giác ABM = t/giác ACM (cmt)
=> góc AMB = góc AMC (hai góc tương ứng)
Mà \(\widehat{AMB}+\widehat{AMC}=180^0\)
=> \(2\widehat{AMB}=180^0\)
=> \(\widehat{AMB}=180^0:2=90^0\)
=> AM \(\perp\)BC ( Đpcm)
c) Xét t/giác AMD và t/giác CED
có AD = CD (gt)
góc ADM = góc EDC (đối đỉnh)
DM = DE (gt)
=> t/giác AMD = t/giác CED (c.g.c)
=> góc MAD = góc DCE (hai góc tương ứng)
Mà góc MAD và góc DCE ở vị trí so le trong
=> AM // EC (Đpcm)
d) Ta có : t/giác MAD = t/giác DCE (cmt)
=> AM = CE (hai cạnh tương ứng)
Do AM // EC (cmt) => góc AMC + góc MCE = 1800 (trong cùng phía)
=> góc MCE = 1800 - góc AMC = 1800 - 900 = 900 (vì góc AMB = góc AMC mà góc AMB = 900 => góc AMC = 900)
Xét t/giác AMC và t/giác MCE
có AM = CE (cmt)
góc AMC = góc MCE (cmt)
MC : chung
=> t/giác AMC = t/giác MCE (c.g.c)
=> ME = AC (hai cạnh tương ứng)
mà MD = DE = ME/2
hay AC/2 = MD (Đpcm)
a/ - AB = AC ( gt )
ABM = ACM vì { - AM chung
(c.c.c) - MB = MC ( m là trung điểm )
b/ AB // DC k phải AB // BC
T/g ABM = t/g DCM ( c.g.c)
AM = DM ( gt )
Góc AMB = DMC ( đđ )
BM = CM ( gt )
Có ABM = DCM ( t/g ABM = t/g DCM )
Lại ở vị trí slt
=> AB // DC
c/
AB = AC ( gt )
=> ABC cân tại A
Có AM là trung tuyến ( m là trug điểm )
=> AM là đường cao ABC
=> AM vuông góc BC
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
b: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
c: Xét tứ giác ABMH có
I là trung điểm của AM
I là trung điểm của BH
Do đó: ABMH là hình bình hành
Suy ra; AH//BM
hay AH//BC