K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2016

Mình đã giải xong câu a, b, c. Nhờ các bạn và quý thầy cô giải giúp câu d. Chỉ cần tóm tắt lời giải thôi cũng được ạ.

26 tháng 3 2016

d) SADE = 1/2.AD.AE ; SABC = 1/2.AB.AC => SADE / SABC = AD.AE/AB.AC =1/4 (1)

Do tg ADE đồng dạng tg ABC => SADE / SABC = (DE/BC)2 = (AH/BC)2 (2)

Từ (1) và (2) => AH/BC = 1/2 hay AH = !/2 BC. Vậy AH là đường trung tuyến tg ABC, mà AH là đường cao => tg ABC cân tại A 

a: Xét tứ giác ADHE có

góc ADH=góc AEH=góc DAE=90 độ

nên ADHE là hình chữ nhật

b: Vì ADHE là hình chữ nhật

nên AH=DE

c: Để ADHE là hình vuông thì AH là phân giác của góc DAE

mà AH vuông góc vơi BC

nên ΔABC cân tại A

=>AB=AC

AH
Akai Haruma
Giáo viên
30 tháng 3 2023

Lời giải:
a. Xét tam giác $AHB$ và $CAB$ có:
$\widehat{AHB}=\widehat{CAB}=90^0$

$\widehat{B}$ chung

$\Rightarrow \triangle AHB\sim \triangle CAB$ (g.g)

b. Từ tam giác đồng dạng phần a suy ra:

$\frac{HB}{AB}=\frac{AB}{CB}$

$\Rightarrow HB=\frac{AB^2}{BC}=\frac{AB^2}{\sqrt{AB^2+AC^2}}=\frac{15^2}{\sqrt{15^2+20^2}}=9$ (cm)

c. Xét tam giác $AHD$ và $ABH$ có:

$\widehat{A}$ chung

$\widehat{ADH}=\widehat{AHB}=90^0$

$\Righarrow \triangle AHD\sim \triangle ABH$ (g.g)

$\Rightarrow \frac{AH}{AB}=\frac{AD}{AH}$

$\Rightarrow AB.AD=AH^2(*)$

Tương tự ta cũng chỉ ra $\triangle AHE\sim \triangle ACH$ (g.g)

$\Rightarrow AE.AC=AH^2(**)$
Từ $(*); (**)\Rightarrow AB.AD=AE.AC$ (đpcm)

 

AH
Akai Haruma
Giáo viên
30 tháng 3 2023

Hình vẽ:

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có 

\(\widehat{ABC}\) chung

Do đó: ΔABC~ΔHBA

=>\(\dfrac{BA}{BH}=\dfrac{BC}{BA}\)

=>\(BA^2=BH\cdot BC\)

b: Sửa đề: Đường trung tuyến CM của ΔABC cắt HD tại N

Ta có: HD\(\perp\)AC

AB\(\perp\)AC

Do đó: HD//AB

=>ND//AM và HN//MB

Xét ΔCAM có ND//AM

nên \(\dfrac{ND}{AM}=\dfrac{CN}{CM}\left(1\right)\)

Xét ΔCMB có NH//MB

nên \(\dfrac{NH}{MB}=\dfrac{CN}{CM}\left(2\right)\)

Từ (1) và (2) suy ra \(\dfrac{ND}{AM}=\dfrac{NH}{MB}\)

mà AM=MB

nên ND=NH

=>N là trung điểm của DH

a: Xét ΔAHB vuông tại H và ΔCAB vuông tại A có

góc B chung

=>ΔAHB đồng dạng với ΔCAB

b: \(BC=\sqrt{15^2+20^2}=25\left(cm\right)\)

HB=15^2/20=9cm

c: AD*AB=AH^2

AE*AC=AH^2

=>AD*AB=AE*AC

20 tháng 3 2022

Xét tam giác AEH và tam giác AHB, có:

\(\widehat{AHB}=\widehat{AEH}=90^0\)

\(\widehat{A}:chung\)

Vậy tam giác AEH đồng dạng tam giác AHB ( g.g )