cho tam giác ABC có AB=AC và tia phân giác góc A cắt BC ở H: a,chứng minh tam giác ABH=tam giác ACH b,chứng minh AH vuông góc BC c,vẽ HD vuông góc AB(D thuộc AB) và HE vuông góc AC(E thuộc AC) chứng minh DE song song BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABH và ΔACH có
AB=AC
AH chung
HB=HC
Do đó: ΔAHB=ΔAHC
a: Ta có: ΔAHB vuông tại H
=>\(AH^2+HB^2=AB^2\)
=>\(AH^2=10^2-6^2=64\)
=>\(AH=\sqrt{64}=8\left(cm\right)\)
b: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
=>\(\widehat{BAH}=\widehat{CAH}\)
=>AH là phân giác của góc BAC
c: Ta có: ΔAHB=ΔAHC
=>BH=CH
Xét ΔBMH vuông tại M và ΔCNH vuông tại N có
BH=CH
\(\widehat{B}=\widehat{C}\)
Do đó: ΔBMH=ΔCNH
d: Xét ΔABO vuông tại B và ΔACO vuông tại C có
AO chung
AB=AC
Do đó: ΔABO=ΔACO
=>OB=OC
=>ΔOBC cân tại O
a) Xét \(\Delta ABH\) và \(\Delta ACH\)
có: + AB=AC(gt)
+góc BAH=CAH
+AH: cạnh chung.
Vậy \(\Delta ABH=\Delta ACH\left(c.g.c\right)\)
b) Vì \(\Delta ABH=\Delta ACH\left(cmt\right)\)
=> góc BHA=CHA( 2 góc tương ứng)
Mà \(BHA+CHA+180^o\) (kề bù)
Do đó: \(BHA=CHA=\frac{180^o}{2}=90^o\)
Vậy \(AH\perp BC\) tại H
(Bài làm có j ko hiểu bn cứ hỏi mk nhé ^...^ ^_^)
- Gỉai
- Câu a)
- Vì AH là tia phân giác của góc A
- => Góc BAH = Góc CAH
- Xét tam giác BAH và tam giác CAH có:
- AB = AC
- Góc BAH = Góc CAH
- Chung AH
- => Tam giác BAH = Tam giác CAH
- Câu b)
- Trong tam giác cân ABC, AH vừa là trung tuyến vừa là đường cao
- => AH vuông góc BC
a: Xet ΔABH và ΔACH có
AB=AC
BH=CH
AH chung
=>ΔABH=ΔACH
=>góc BAH=góc CAH
=>AH là phân giác của góc BAC
b: góc DAH=góc CAH=góc DHA
=>ΔDAH cân tại D
a: Xét ΔABH và ΔACH có
AB=AC
\(\widehat{BAH}=\widehat{CAH}\)
AH chung
Do đó: ΔABH=ΔACH
b: Ta có: ΔACB cân tại A
mà AH là đường phân giác
nên AH là đường cao
c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
\(\widehat{DAH}=\widehat{EAH}\)
Do đó: ΔADH=ΔAEH
Suy ra: AD=AE
Xét ΔABC có
AD/AB=AE/AC
Do đó: DE//BC