K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2017

Cách 1 :

HC -HB = AB, HC +HB =BC
nhân 2 vế ta có HC^2 -HB^2 =AB.BC (1).
Áp dụng Pitago ta có HC ^2 =AC^2-AH^2, HB^2 = AB^2 -AH^2 nên HC^2 - HB^2 =AC^2 -AB^2 = (BC^2 -AB^2 ) -AB^2 = BC^2 -2AB^2 ,(2). Từ (1 ) và (2 ) có BC^2 - 2AB^2 =AB.BC
<=> BC^2 -AB.BC - 2AB^2 = 0
<=> (BC +AB) (BC -2AB ) = 0,
do AB +BC >0 => BC - 2AB = 0 => BC = 2AB

Cách 2:

Dựa vào đường xiên và hình chiếu :
lấy điểm D nằm giữa H,C sao cho HD = HB
==> AB = AD ( do có 2 hình chiếu bằnng nhau )
Đồng thời : AB = HC -- HB ( gt) = HC --HD = CD => AB = CD
nên : AD = CD
Kẻ đường cao DK xuống AC ==> AK = KC (do có 2 đxiên bằng nhau)
Nên K là trung điểm của AC và DK // AB ( do cùng vuông góc AC ) Từ đó D là trung điểm của BC ( đường trung bình )
==> BC = 2. BD = 2. CD , thay CD = AB ta được
----->BC = 2 .AB

15 tháng 3 2017

còn 1 cách nữa đó, dù j thì cũng phải gật đầu công nhận là bạn giỏi thật, mình ko nghĩ tới 2 cách này lun hiha, cách của mình là lớp 8 mới đụng đến

7 tháng 7 2019

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Trên HC lấy D sao cho HD = HB. Tam giác ABD có đường cao AH là trung tuyến nên là tam giác cân, suy ra

∠(ADB) = ∠B . (1)

Ta có: DC = HC – HD = HC – HB = AB = AD ( vì tam giác ABD cân tại A)

Nên ΔADC cân tại D, do đó ∠(DAC) = ∠C (2)

Ta có; ∠ADB + ∠DAC = ∠BAC = 90º (3)

Và ∠B + ∠C = 90º vì tam giác ABC vuông tại A (4)

Từ (2); (3) và (4) suy ra ∠(DAB) = ∠B . (5)

Từ (1) và (5) suy ra ∠(ADB) = ∠B = ∠(DAB) , do đó ΔABD là tam giác đều.

Suy ra AB = BD = AD = DC. Vậy BC = 2AB.

21 tháng 2 2018

Do HC -HB = AB

Mà HC +HB =BC =>  nhân 2 vế ta có:

HC2 -HB2 =AB.BC (1).

Áp dụng định lí Pi-ta-go ta có:

HC2 =AC2-AH2

HB2 = AB2 -AH2 

Nên HC2 - HB2 =AC2 -AB2 = (BC2 -AB2 ) -AB2 = BC2 -2AB2 ,(2).

Từ (1 ) và (2 ) có: BC2 - 2AB2 =AB.BC

                          <=> BC2 -AB.BC - 2AB2 = 0

                           <=> (BC +AB) (BC -2AB ) = 0,

Do AB +BC >0 nên BC = 2AB.

21 tháng 2 2018

HC -HB = AB, HC +HB =BC 
nhân 2 vế ta có HC^2 -HB^2 =AB.BC (1). 
Áp dụng Pitago ta có HC ^2 =AC^2-AH^2, HB^2 = AB^2 -AH^2 nên HC^2 - HB^2 =AC^2 -AB^2 = (BC^2 -AB^2 ) -AB^2 = BC^2 -2AB^2 ,(2). Từ (1 ) và (2 ) có BC^2 - 2AB^2 =AB.BC 
<=> BC^2 -AB.BC - 2AB^2 = 0 
<=> (BC +AB) (BC -2AB ) = 0, 
do AB +BC >0 => BC - 2AB = 0 => BC = 2AB.

:3

Bài 2: 

Ta có: \(\dfrac{HB}{HC}=\dfrac{1}{3}\)

nên HC=3HB

Ta có: \(AH^2=HB\cdot HC\)

\(\Leftrightarrow HB^2=48\)

\(\Leftrightarrow HB=4\sqrt{3}\left(cm\right)\)

\(\Leftrightarrow BC=4\cdot HB=16\sqrt{3}\left(cm\right)\)

Bài 1:

ta có: \(AB=\dfrac{1}{2}AC\)

\(\Leftrightarrow\dfrac{HB}{HC}=\dfrac{1}{4}\)

\(\Leftrightarrow HC=4HB\)

Ta có: \(AH^2=HB\cdot HC\)

\(\Leftrightarrow HB=1\left(cm\right)\)

\(\Leftrightarrow HC=4\left(cm\right)\)

hay BC=5(cm)

Xét ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AB^2=HB\cdot BC\\AC^2=HC\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=\sqrt{5}\left(cm\right)\\AC=2\sqrt{5}\left(cm\right)\end{matrix}\right.\)

Bài 2: 

Xét ΔABC có 

\(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{25}{13}\left(cm\right)\\CH=\dfrac{144}{13}\left(cm\right)\end{matrix}\right.\)

Bài 1: 

Ta có: \(\dfrac{AB}{AC}=\dfrac{5}{6}\)

\(\Leftrightarrow HB=\dfrac{25}{36}HC\)

Ta có: \(AH^2=HB\cdot HC\)

\(\Leftrightarrow HC^2\cdot\dfrac{25}{36}=900\)

\(\Leftrightarrow HC=36\left(cm\right)\)

hay HB=25(cm)