Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tam giác ABC vuông tại A có:
\(cos\widehat{B}=\frac{AB}{BC}=\frac{3}{\sqrt{18}}=\frac{\sqrt{2}}{2}\)
=> \(\widehat{B}=45^o\)
mà \(\widehat{B}+\widehat{C}=90^o\)(tam giác ABC vuông tại A)
=> \(\widehat{C}=90^o-\widehat{B}=90^o-45^o=45^o\)
Vậy...
(Hình bạn tự vẽ)
a) Ta có: \(\dfrac{AB}{BC}=\dfrac{6}{9}=\dfrac{2}{3}\)
\(\dfrac{BC}{BD}=\dfrac{9}{6+7,5}=\dfrac{2}{3}\)
Xét ΔABC và ΔCBD có:
Góc B chung
\(\dfrac{AB}{BC}=\dfrac{BC}{BD}\)\(\left(=\dfrac{2}{3}\right)\)
⇒ΔABC ∼ ΔCBD (c.g.c)
b) Theo câu a ta có: ΔABC ∼ ΔCBD
⇒ \(\dfrac{AB}{AC}=\dfrac{CB}{CD}\)\(=\dfrac{6}{7,5}=\dfrac{9}{CD}\)
⇒ \(CD=\dfrac{7,5.9}{6}\)\(=\dfrac{45}{4}=11,25\)
c) Theo câu a ta có: ΔABC ∼ ΔCBD
⇒ Góc BAC = góc BCD (1)
Xét ΔBCD có: \(\dfrac{BA}{AD}=\dfrac{BC}{CD}\)
Hay \(\dfrac{6}{7,5}=\dfrac{9}{11,25}\)\(=\dfrac{4}{5}\)
⇒ CA là phân giác góc BCD
⇒ Góc ACB= góc ACD (2)
Từ (1), (2) ⇒ góc BAC = 2 góc ACB
\(\widehat{ABC}=180^0-\left(30^0+75^0\right)=75^0\)
\(\Rightarrow\Delta ABC\) cân tại A \(\Rightarrow AB=AC=6\)
\(S_{ABC}=\dfrac{1}{2}AB.AC.sinA=\dfrac{1}{2}.6.6.sin30^0=9\)