K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2017

\(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)

\(\Leftrightarrow\frac{b-a}{ab}=\frac{1}{a-b}\)

\(\Leftrightarrow\frac{\left(b-a\right)\left(a-b\right)}{ab\left(a-b\right)}=\frac{ab}{\left(a-b\right)ab}\)

\(\Leftrightarrow-\left(b-a\right)^2=ab\)

\(\Leftrightarrow-b^2+2ab-a^2=ab\)

\(\Leftrightarrow\)\(ab=a^2+b^2\)

Từ đây dùng cô-si : \(a^2+b^2\ge4ab\)

Vậy không có số dương a,b thỏa mãn

29 tháng 5 2017

ukm,bằng?

AH
Akai Haruma
Giáo viên
12 tháng 2 2023

Lời giải:
Ta có:
$1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{49}-\frac{1}{50}$

$=(1+\frac{1}{3}+\frac{1}{5}+....+\frac{1}{49})-(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50})$

$=(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+....+\frac{1}{49}+\frac{1}{50})-2(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50})$

$=(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+....+\frac{1}{49}+\frac{1}{50})-(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{25})$

$=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}$

8 tháng 3 2017

1/2!+1/3!+...+1/100!<1/1*2+1/2*3+1/3*4+...+1/99*100

1-1/100<1