Cho tam giác ABC vuông tại A (AB < AC). Tia phân giác góc B cắt AC tại D. Kẻ DH vuông góc với BC. Lấy điểm E trên cạnh AC sao cho AE = AB. Đường thẳng vuông góc với AE tại E cắt DH tại K. Qua B kẻ đường vuông góc với EK tại I. Chứng minh:
a, BA = BH (Đã chứng minh)
b, Góc DBK = 45 độ (Đã chứng minh)
c, BC = IK + AC
Mong được mọi người giúp đỡ! Em xin cảm ơn trước ạ!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABD vuông tại A và ΔHBD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)(BD là tia phân giác của \(\widehat{ABH}\))
Do đó: ΔABD=ΔHBD(cạnh huyền-góc nhọn)
Suy ra: BA=BH(hai cạnh tương ứng)
a) Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)(BD là tia phân giác của \(\widehat{ABH}\))
Do đó: ΔBAD=ΔBHD(cạnh huyền-góc nhọn)
Suy ra: BA=BH(Hai cạnh tương ứng)
a ) xét 2 tam giác BAD và tam giác BHD (góc A= góc H= 90 độ)
ta có: cạnh huyền BD chung
góc ABD= góc HBD (vì BD là phân giác góc B)
=>tam giác BAD=tam giác BHD(cạnh huyền-góc nhọn)
<=>BA=BH (2 cạnh tương ứng)
: -Kéo dài EK cắt đường thẳng vuông góc với AB kẻ từ B tại Q.
-Chứng minh được: AB=AE=BQ. Mà theo phần a), ta có: BA=BH => BH=BQ.
=> tam giác BHK= tam giác BQK( cạnh huyền- cạnh góc vuông).
=> góc HBK= góc QBK. Mà theo phần a), ta có: góc ABD= góc DBH.
=> góc DBK= 1/2.góc ABD. Mà góc ABD= 90 độ.
=> góc DBK=45 độ.(đpcm)