K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác ADME có

gócADM=góc AEM=góc DAE=90 độ

=>ADME là hình chữ nhật

b: góc AHM=góc AEM=góc ADM=90 độ

=>A,D,H,M,E cùng thuộc đường tròn đường kính AM

mà ED và AM cùng là đường kính của đường tròn đường kính AM(ED=AM)

nên H nằm trên đường tròn đường kính DE
=>góc DHE=90 độ

c: DE=AM

AM>=AH

=>DE>=AH

Dấu = xảy ra khi M trùng với H

=>M là chân đường cao kẻ từ A xuống BC

4 tháng 12 2021

1.

Gọi cạnh tam giác ABC là a

\(S_{ABC}=S_{AMB}+S_{BMC}+S_{AMC}\\ \Leftrightarrow\dfrac{1}{2}ah=\dfrac{1}{2}ax+\dfrac{1}{2}ay+\dfrac{1}{2}az\\ \Leftrightarrow x+y+z=h\)

Lại có \(3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2=h^2\left(bunhia\right)\)

\(\Leftrightarrow x^2+y^2+z^2\ge\dfrac{1}{3}h^2\)

Dấu \("="\Leftrightarrow x=y=z\Leftrightarrow M\) là giao 3 đường p/g của \(\Delta ABC\)

11 tháng 8 2019

A B C H M I K

Không mất tính tổng quát, ta xét M thuộc HC (trường hợp M thuộc HB tương tự)

Tam giác ABC vuông tại A có đường cao AH xuất phát từ đỉnh A nên \(AH=\frac{1}{2}BC\) (1) và AH cũng là đường trung tuyến \(\Rightarrow HC=HB=\frac{1}{2}BC\) (2) và đường phân giác => ^CAH = ^BAH. Từ (1) và (2) suy ra \(\Delta\)AHC vuông cân tại H. Từ đó 

AH = HC và ^ACH = ^HAC = ^BAH. Tới đây tìm cách chứng minh AI = CK(mình chưa biết làm đâu:v). Từ đó suy ra \(\Delta\)HIA = \(\Delta\)HKC. Suy ra ^AHI = ^CHK suy ra ^IHK = ^IHA + ^AHK = ^CHK + ^AHK = 90o => \(\Delta\)IHK vuông tại H (3)

Mặt khác từ  \(\Delta\)HIA = \(\Delta\)HKC suy ra HI =HK suy ra  \(\Delta\)IHK cân tại H (4)

Từ (3) và (4) suy ra đpcm.

P/s: Ko chắc, bác zZz Cool Kid zZz check giúp:v

11 tháng 8 2019

làm đoạn tth thiếu nhé:

cm AI=CK

t/g ABC vuông cân tại A => ABC^=45 độ

t/g BIM có I^=90 độ mà ABC^=45 độ => BMI^=45 độ

=> t/g BIM vuông cân tại I => BI=IM 

Mà tứ giác BIAK có I^=A^=K^=90 độ => tứ giác BIAK là HCN => IM=AK=BI

Mà AB=AC

=> AB-BI=AC-AK

=>  AI=CK