K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
20 tháng 12 2022
a: Xét tứ giác AIDK có
góc AID=góc AKD=góc KAI=90 độ
nên AIDK là hình chữ nhật
b: Vì AIDK là hình chữ nhật
nên AD cắt KI tại trung điểm của mỗi đường và AD=KI
=>ΔOAK cân tại O
26 tháng 10 2023
a: Xét tứ giác AIMJ có
\(\widehat{AIM}=\widehat{AJM}=\widehat{JAI}=90^0\)
=>AIMJ là hình chữ nhật
b: AIMJ là hình chữ nhật
=>MI//AJ và MI=AJ
MI=AJ
MN=MI
Do đó: MN=AJ
MI//AJ
N\(\in\)MI
Do đó: MN//JA
Xét tứ giác AMNJ có
AJ//MN
AJ=MN
Do đó: AMNJ là hình bình hành
Không mất tính tổng quát, ta xét M thuộc HC (trường hợp M thuộc HB tương tự)
Tam giác ABC vuông tại A có đường cao AH xuất phát từ đỉnh A nên \(AH=\frac{1}{2}BC\) (1) và AH cũng là đường trung tuyến \(\Rightarrow HC=HB=\frac{1}{2}BC\) (2) và đường phân giác => ^CAH = ^BAH. Từ (1) và (2) suy ra \(\Delta\)AHC vuông cân tại H. Từ đó
AH = HC và ^ACH = ^HAC = ^BAH. Tới đây tìm cách chứng minh AI = CK(mình chưa biết làm đâu:v). Từ đó suy ra \(\Delta\)HIA = \(\Delta\)HKC. Suy ra ^AHI = ^CHK suy ra ^IHK = ^IHA + ^AHK = ^CHK + ^AHK = 90o => \(\Delta\)IHK vuông tại H (3)
Mặt khác từ \(\Delta\)HIA = \(\Delta\)HKC suy ra HI =HK suy ra \(\Delta\)IHK cân tại H (4)
Từ (3) và (4) suy ra đpcm.
P/s: Ko chắc, bác zZz Cool Kid zZz check giúp:v
làm đoạn tth thiếu nhé:
cm AI=CK
t/g ABC vuông cân tại A => ABC^=45 độ
t/g BIM có I^=90 độ mà ABC^=45 độ => BMI^=45 độ
=> t/g BIM vuông cân tại I => BI=IM
Mà tứ giác BIAK có I^=A^=K^=90 độ => tứ giác BIAK là HCN => IM=AK=BI
Mà AB=AC
=> AB-BI=AC-AK
=> AI=CK