K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2016

Gọi UCLN(2a+3,a+2)=d

Ta có:2a+3 chia hết cho d

        a+2 chia hết cho d

=>2a+3 chia hết cho d

2(a+2) chia hết cho d

=>2a+3 chia hết cho d

2a+4 chia hết cho d

=>(2a+4)-(2a+3) chia hết cho d

=>1 chia hết cho d

=>d=1

Vậy phân số có dạng \(\frac{2a+3}{a+2}\) tối giản

28 tháng 3 2016

GỌI Đ LÀ  ƯC (2A+3/A+2)

=>2A+3 CHIA HẾT CHO Đ

=>A+2 CHIA HẾT CHO Đ

=>(2A+3)-(A+2) CHIA HẾT CHO Đ

=>Đ CHIA HẾT CHO 1

=>Đ=1

=>\(\frac{2A+3}{A+2}\) LÀ PHÂN SỐ TỐI GIẢN

17 tháng 3 2016

Gọi d là ƯCLN(3a+4;2a+3)

Ta có: 3a+4 chia hết cho d => (3a+4).2=6a+8 chia hết cho d         (1)

2a+3 chia hết cho d => (2a+3).3=6a+9 chia hết cho d             (2)

Từ (1) và (2) => (6a+9)-(6a+8)=1 chia hết cho d

=> d thuộc Ư(1)={-1;1}

Vì d ={-1;1}  => 3a+4/2a+3 là phân số tối giản    ( ĐPCM )

17 tháng 3 2016

goi d la UCLN cua 3a+4 va 2a+3 , ta can chung minh d =1 .

ta co : 3a+4 = 2(3a+4)=6a+8.

2a+3=3(2a+3)=6a+9.

Vi 6a+9 - 6a+8 = 1 => d=1 .

Vay phan so 3a+4/2a+3 toi gian.

k minh nhiu nhiu nha.

3 tháng 4 2016

Goi d la UCLN(3a+4,2a+3)                          (d thuoc N*)

Ta co: 3a+4 chia het cho d

            2a+3 chia het cho d

Suy ra: 3(2a+3)-2(3a+4) chia het cho d

Suy ra :               1             chia het cho d

Suy ra: d = 1

Suy ra: dpcm

12 tháng 2 2018

Gọi \(d=ƯCLN\left(2a+3;a+2\right)\)

\(\Leftrightarrow\hept{\begin{cases}2a+3⋮d\\a+2⋮d\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2a+3⋮d\\2a+4⋮d\end{cases}}\)

\(\Leftrightarrow1⋮d\)

\(\Leftrightarrow d=1\)

\(\LeftrightarrowƯCLN\left(2a+3;a+2\right)=1\)

\(\Leftrightarrow\frac{2a+3}{a+2}\) là phân số tối giản

9 tháng 3 2017

gọi d là ước chung của 3a+4 và 2a+3

ta có 3a+4 - 2a+3 chia het cho d

=> 2(3a+4)-3(2a+3) chia hết cho d

=>6a+8-6a+9 chia het cho d

=>-1 chia het cho d

chứng tỏ rằng phân số trên là phân số tối giản

20 tháng 2 2017

Đặt UC(2a+3,a+2)=d

=> \(\hept{\begin{cases}2a+3⋮d\\a+2⋮d\end{cases}\Leftrightarrow}2\left(a+2\right)-2a-3⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1\)

Vậy phân số là tối giản

P/S: PP chung của dạng này là: Đặt UC của Tử và mẫu là d, sau đó thêm bớt thích hợp để CM d=1

1 tháng 4 2019

\(\frac{2a+3}{a+2}=\frac{2\left(a+2\right)-1}{a+2}=2-\frac{1}{a+2}\)

Vì \(\frac{1}{a+2}\)là phân số tối giản \(\Rightarrow\frac{2a+3}{a+2}\)là phân só tối giản

1 tháng 4 2019

Gọi UCLN của 2a+3 và a+2 là d

=>\(\hept{\begin{cases}2a+3⋮d\\a+2⋮d\end{cases}\Leftrightarrow\hept{\begin{cases}2a+3⋮d\\2a+4⋮d\end{cases}}}\Leftrightarrow1⋮d\)

=> d=1

=> phân số đó tối giản 

22 tháng 3 2016

gọi d là UCLN(2a+3;a+2)

ta có :

2(a+2)-2a+3 chia hết cho d

=>2a+4-2a+3 chia hết cho d

=>1 chia hết cho d

=>d=1

=>\(\frac{2a+3}{a+2}\) là phân số tối giản

22 tháng 3 2016

dễ khoi , 2a+3=(a+2)+(a+2)-1

mà 4+2 chia hết cho a+2

=> 1 chia hết cho a+2

=> UC của 2a+3 và a+2 là 1

vậu nó tối giản , ko hiểu thì nói vs tui

12 tháng 2 2018

gọi \(\text{Ư}CLN_{\left(3a+4;2a+3\right)}=d\)

\(\Rightarrow\hept{\begin{cases}3a+4⋮d\\2a+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(3a+4\right)⋮d\\3\left(2a+3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6a+8⋮d\\6a+9⋮d\end{cases}}}\)

\(\Rightarrow6a+9-\left(6a+8\right)⋮d\)

\(\Rightarrow6a+9-6a-8⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

vậy phân số \(\frac{3a+4}{2a+3}\) là phân số tối giản

12 tháng 2 2018

\(\frac{3a+4}{2a+3}\)

Gọi d = ƯCLN ( 3a + 4 ; 2a + 3 )

Ta có :

3a + 4 \(⋮\)d ; 2a + 3 \(⋮\)d

=> 2 ( 3a + 4 ) \(⋮\)d ; 3 ( 2a + 3 ) \(⋮\)d

=> 6a + 8 \(⋮\)d ; 6a + 9 \(⋮\)d

=> ( 6a + 9 ) - ( 6a + 8 ) \(⋮\)d

=> 1 \(⋮\)d

Vậy ...........