tìm các số a,b,c sao cho với mọi số nguyên dương n ta đều có:
aa..abb..b +1 (n chữ số a và n chữ số b) = (c...c +1)^2 (n chữ số c)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Nguyễn Triệu Yến Nhi - Toán lớp 6 - Học toán với OnlineMath
\(\overline{aa...abb...b}=\left(\overline{cc...c}\right)^2\)
\(\Leftrightarrow a.11...1.10^n+b.11...1=c^2.11...1^2\)
\(\Leftrightarrow a.10^n+b=c^2.11...1\)
\(\Leftrightarrow a.\left(9k+1\right)+b=c^2.k\)(với \(k=11...1\)(\(n\)chữ số \(1\)))
\(\Leftrightarrow\left(c^2-9a\right)k=a+b\)
Với \(k=1\)ta có: \(c^2=10a+b\)ta có các bộ số:
\(\left(1,6,4\right),\left(2,5,5\right),\left(3,6,6\right),\left(4,9,7\right),\left(6,4,8\right),\left(8,1,9\right)\)
Với \(k=11\)ta có \(11\left(c^2-9a\right)=a+b\)nên \(\hept{\begin{cases}a+b=11\\c^2-9a=1\end{cases}}\)ta có nghiệm duy nhất \(\left(7,4,8\right)\).
Với \(n>2\)ta thấy hiển nhiên không thỏa mãn do \(a+b< 19\).
Ở đây mình làm trường hợp là nó đúng chỉ với 1 giá trị của \(n\). Do đó ta xét với \(n=1,n=2,...\), tức là \(k=1,k=11,...\). Còn nếu đề là đúng với mọi số nguyên dương \(n\)thì sẽ làm khác một chút, và ra đáp án là không tồn tại giá trị nào cả.
Phần 3 ít ra phải có số cuối cùng thì mới tính được tổng chứ thế này vô hạn à
- Vì N là số tự nhiên có hai chữ số nên đặt \(N=\overline{ab}\) \(\left(0< a\le9;0\le b\le9;a,b\in N\right)\)
Ta có \(S\left(N\right)=S\left(\overline{ab}\right)=ab\) ; \(P\left(N\right)=P\left(\overline{ab}\right)=a+b\)
Vì \(N=S\left(N\right)+P\left(N\right)\) nên \(\overline{ab}=ab+a+b\)
\(\Rightarrow10a+b=ab+a+b\)
\(\Rightarrow9a=ab\Rightarrow b=9\) (vì a khác 0)
Vậy chữ số hàng đơn vị của N là 9 ---> chọn E
tớ mới học lớp 6