K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2023


ý của bạn là cotang đk ạ chứ mình thấy cos nó sai ýloading...

Đề sai rồi bạn

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c' cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’,...
Đọc tiếp

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

 

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

 cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

 cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

 cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

 cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

 cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

 cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

 cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

 cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

 cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

 cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

 cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

 

1
15 tháng 6 2022

https://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.html

a, Áp dụng định lí Pitago

\(\dfrac{AC^2+CB^2-BA^2}{CB^2+BA^2-AC^2}\\ =\dfrac{AK^2+KC^2+\left(BK+KC\right)^2-AB^2}{\left(BK+KC^2\right)+BA^2-\left(AK+KC\right)^2}\\ =\dfrac{2CK^2+2BK.CK}{2BK^2+2BK.Ck}\\ =\dfrac{2CK\left(CK+BK\right)}{2BK\left(BK+CK\right)}=\dfrac{CK}{BK}\) 

b, Ta có 

\(tanB=\dfrac{AK}{BK};tanC=\dfrac{AK}{CK}\\ Nên:tanBtanC=\dfrac{AK^2}{BK.CK}\left(1\right)\\ Mặt.khác.ta.có:\\ B=HKC\\ mà:tanHKc=\dfrac{KC}{KH}\\ Nên.tanB=\dfrac{KC}{KH}\\ Tương.tự.tanC=\dfrac{KB}{KH}\\ \Rightarrow tanB.tanC=\dfrac{KB.KC}{KH^2}\left(2\right)\) 

Từ (1) và (2)

 \(\Rightarrow\left(tanB.tanC\right)^2=\left(\dfrac{AK}{KH}\right)^2\\ Theo.GT:\\ HK=\dfrac{1}{3}AK\Rightarrow tanB.tanC=3\) 

c, Chứng minh được 

\(\Delta ABC.và.\Delta ADE.đồng.dạng\\ \Rightarrow\dfrac{S_{ABC}}{S_{ADE}}=\left(\dfrac{AB}{AD}\right)^2\left(3\right)\) 

 \(\widehat{BAC}=60^0\Rightarrow\widehat{ABD}=30^0\\\Rightarrow AB=2AD\left(4\right)\\ Từ.\left(3\right)và\left(4\right)=4\\ \Rightarrow S_{ADE}=30cm^2\)

Ta có:

\(\dfrac{tanA}{tan^3B}=\dfrac{tanA}{tanB}.\dfrac{1}{tan^2B}=\dfrac{\dfrac{sinA}{cosA}}{\dfrac{sinB}{cosB}}.\dfrac{cos^2B}{sin^2B}\)

\(=\dfrac{sinA}{sinB}.\dfrac{cosB}{cosA}.\dfrac{cos^2B}{sin^2B}\)

\(=\dfrac{a}{b}.\dfrac{\dfrac{a^2+c^2-b^2}{2ac}}{\dfrac{b^2+c^2-a^2}{2bc}}.\dfrac{\left(\dfrac{a^2+c^2-b^2}{2ac}\right)^2}{1-\left(\dfrac{a^2+c^2-b^2}{2ac}\right)^2}\)

\(=\dfrac{a^2+c^2-b^2}{b^2+c^2-a^2}.\dfrac{\left(a^2+c^2-b^2\right)^2}{\left(2ac\right)^2-\left(a^2+c^2-b^2\right)^2}\)

\(=\dfrac{\left(a^2+c^2-b^2\right)^3}{b^2+c^2-a^2}.\dfrac{1}{\left[\left(a+c\right)^2-b^2\right]\left[b^2-\left(a-c\right)^2\right]}\)

\(=\dfrac{\left(a^2+c^2-b^2\right)^3}{b^2+c^2-a^2}.\dfrac{1}{\left(a+b+c\right)\left(a+c-b\right)\left(b+c-a\right)\left(a+b-c\right)}\)

Biến đổi tương tự, ta có BĐT tương đương với BĐT đã cho:

\(\dfrac{\left(a^2+c^2-b^2\right)^3}{b^2+c^2-a^2}+\dfrac{\left(a^2+b^2-c^2\right)^3}{a^2+c^2-b^2}+\dfrac{\left(b^2+c^2-a^2\right)^3}{a^2+b^2-c^2}\ge\left(a+b+c\right)\left(b+c-a\right)\left(a+c-b\right)\left(a+b-c\right)\)

Ta có BĐT phụ sau:

\(\dfrac{x^3}{y}+\dfrac{y^3}{z}+\dfrac{z^3}{x}\ge xy+yz+xz\left(\text{*}\right)\) với \(x,y,z>0\)

Chứng minh:

Áp dụng BĐT cộng mẫu:

\(\dfrac{x^3}{y}+\dfrac{y^3}{z}+\dfrac{z^3}{x}=\dfrac{x^4}{xy}+\dfrac{y^4}{yz}+\dfrac{z^4}{xz}\)

\(\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{xy+yz+xz}\ge\dfrac{\left(xy+yz+xz\right)^2}{xy+yz+xz}=xy+yz+xz\)(đpcm)

Đẳng thức xảy ra khi và chỉ khi \(x=y=z\)

Áp dụng BĐT \(\left(\text{*}\right)\), với đk \(\Delta ABC\) có ba góc nhọn, ta có:

\(\dfrac{\left(a^2+c^2-b^2\right)^3}{b^2+c^2-a^2}+\dfrac{\left(a^2+b^2-c^2\right)^3}{a^2+c^2-b^2}+\dfrac{\left(b^2+c^2-a^2\right)^3}{a^2+b^2-c^2}\ge\left(a^2+c^2-b^2\right)\left(a^2+b^2-c^2\right)+\left(a^2+b^2-c^2\right)\left(b^2+c^2-a^2\right)+\left(b^2+c^2-a^2\right)\left(a^2+c^2-b^2\right)\)

Ta chứng minh được:

\(\left(a^2+c^2-b^2\right)\left(a^2+b^2-c^2\right)+\left(a^2+b^2-c^2\right)\left(b^2+c^2-a^2\right)+\left(b^2+c^2-a^2\right)\left(a^2+c^2-b^2\right)=\left(a+b+c\right)\left(b+c-a\right)\left(a+c-b\right)\left(a+b-c\right)\)

\(=-a^4-b^4-c^4+2a^2b^2+2b^2c^2+2a^2c^2\)

Vậy ta có BĐT cần chứng minh, đẳng thức xảy ra khi và chỉ khi \(\widehat{A}=\widehat{B}=\widehat{C}=60^0\)