Cho a,b,n là các số tự nhiên khác 0.So sánh \(\frac{a+n}{b+n}\)và\(\frac{a}{b}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b}=\frac{a\left(b+n\right)}{b\left(b+n\right)}=\frac{ab+an}{b\left(b+n\right)}\)
\(\frac{a+n}{b+n}=\frac{b\left(a+n\right)}{b\left(b+n\right)}=\frac{ab+bn}{b\left(b+n\right)}\)
TH1: a = b
=> \(\frac{a}{b}=\frac{a+n}{b+n}\)
TH2: a > b
=> \(\frac{a}{b}>\frac{a+n}{b+n}\)
TH3: a < b
=> \(\frac{a}{b}
Vì a,b,c là các số tự nhiên khác 0 nên a,b,c > 0.
Do vậy a < a + b < a + b + c
b < b + c < a + b + c
c < c + a < a + b + c
\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)
a/ \(\sqrt{a+b}=\sqrt{a+c}+\sqrt{b+c}\)
\(\Leftrightarrow a+b=a+c+b+c+2\sqrt{ab+ac+bc+c^2}\)
\(\Leftrightarrow-c=\sqrt{ab+ac+bc+c^2}\)
\(\Leftrightarrow c^2=ab+ac+bc+c^2\)
\(\Leftrightarrow ab+ac+bc=0\)
\(\Leftrightarrow ab=-c\left(a+b\right)\)
\(\Leftrightarrow\frac{ab}{a+b}=-c\)
\(\Leftrightarrow\frac{a+b}{ab}=-\frac{1}{c}\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}=-\frac{1}{c}\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)(đúng)
\(\frac{a+n}{b+n}>\frac{a}{b}\)
vì a,b,n ddeu lá số khác 0 nên khi \(\frac{a+b}{b+n}>\frac{a}{b}\)
Vì a/b=a/b nên khi a+n/b+n>a/b
vậy a+n/b+n>a/b