Cho đa thức P(x)=ax2+bx+c=0
Chứng tỏ rằng nếu 5a-b+2c=0 thì P(-2).P(1) lớn hơn(hoặc bằng) 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: P(-1) = a-b+c
P(-2) = 4a-2b+c
=> P(-1)+P(-2) = 5a-3b+2c = 0
=> P(-1) = P(2)
=> P(-1).P(-2) = P(2).P(-2) = - [P(2)]2 \(\le\)0
Vậy P(-1).P(-2) \(\le\)0
...
=> ...
=> P(-1) = - P(-2)
=> P(-1).P(-2) = - P2(-2) \(\le\)0 vì P2(-2) \(\ge\)0
=> P(-1).P(-2) \(\ge\)0
Câu trả lời này mới đúng , vừa nãy mk nhầm tưởng là nhỏ hơn hoặc bằng, sau đó mk nhìn lại đề bài nên mk sửa
\(P\left(2\right)=4a+2b+c=2\left(5a+b+2c\right)-6a-3c=-6a-3c\)
\(P\left(-1\right)=a-b+c=-\left(5a+b+2c\right)+6a+3c\)
\(\Rightarrow P\left(2\right).P\left(-1\right)=\left(-6a-3c\right)\left(6a+3c\right)=-\left(6a+3c\right)^2\le0\) (đpcm)
Ta có:\(P\left(-2\right)=4a-2b+c\)
\(P\left(1\right)=a+b+c\)
Lấy:\(P\left(1\right)+P\left(-2\right)=5a-b+2c=0\)(theo đề bài)
Vì vậy:\(P\left(1\right)=-P\left(-2\right)\)(Hai số đối nhau tổng bằng 0 )
Do đó:\(P\left(-2\right).P\left(1\right)\le0\)( . là dấu nhân nha bn)
A(-1) = a.(-1)2 + b.(-1) + c = a - b + c
A(2) = a.22 + b.2 + c = 4a + 2b + c
=> A(-1) + A(2) = a - b + c + 4a + 2b + c = 5a + b + 2c = 0
hay A(-1) + A(2) = 0
=> A(-1) = -A(2)
Ta có : A(-1).A(2) = -A(2).A(2) = -A2(2) \(\le0\) vì A2(2) \(\ge0\)
Vậy ..... đpcm .
Ta có :
f(1) + f(-2) = a + b + c + 4a - 2b + c = 5a - b + 2c = 0
\(\Rightarrow\)f(1) = -f(-2)
Do đó : f(1) . f(-2) = -[f(-2)]2 \(\le\)0
SAI ĐỀ:
Chứng tỏ rằng nếu 5a-b+2c=0 thì P(-2).P(1) nhỏ hơn(hoặc bằng) 0