K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
31 tháng 10 2024

Lời giải:

$A-\frac{1}{2}=\frac{3}{2}+(\frac{3}{2})^2+....+(\frac{3}{2})^{2012}$

$\frac{3}{2}(A-\frac{1}{2})=(\frac{3}{2})^2+(\frac{3}{2})^3+....+(\frac{3}{2})^{2013}$

$\Rightarrow \frac{3}{2}(A-\frac{1}{2}) - (A-\frac{1}{2})=(\frac{3}{2})^{2013}-\frac{3}{2}$

$\Rightarrow \frac{1}{2}(A-\frac{1}{2})=(\frac{3}{2})^{2013}-\frac{3}{2}$

$\Rightarrow A=2(\frac{3}{2})^{2013}-\frac{5}{2}$

$\Rightarrow A-B=2(\frac{3}{2})^{2013}-\frac{5}{2}- \frac{1}{2}.(\frac{3}{2})^{2013}$

$\Rightarrow A-B=\frac{3}{2}(\frac{3}{2})^{2013}-\frac{5}{2}=(\frac{3}{2})^{2014}-\frac{5}{2}$

5 tháng 4 2017

Bạn kiểm tra lại đề nhé, hình như đề hơi có vấn đề

6 tháng 4 2015

\(\frac{3}{2}.A=\frac{3}{4}+\left(\frac{3}{2}\right)^2+\left(\frac{3}{2}\right)^3+...+\left(\frac{3}{2}\right)^{2013}\)

\(\Rightarrow\frac{3}{2}.A-A=\frac{3}{4}+\left(\frac{3}{2}\right)^2+\left(\frac{3}{2}\right)^3+...+\left(\frac{3}{2}\right)^{2013}-\left(\frac{1}{2}+\frac{3}{2}+\left(\frac{3}{2}\right)^2+...+\left(\frac{3}{2}\right)^{2012}\right)\)

\(\Rightarrow\frac{1}{2}.A=\frac{3}{4}+\left(\frac{3}{2}\right)^{2013}-\frac{1}{2}-\frac{3}{2}=\left(\frac{3}{2}\right)^{2013}-\frac{5}{4}\Rightarrow A=2.\left(\frac{3}{2}\right)^{2013}-\frac{5}{2}\)

\(B-A=\frac{1}{2}.\left(\frac{3}{2}\right)^{2013}-2.\left(\frac{3}{2}\right)^{2013}+\frac{5}{2}=-\left(\frac{3}{2}\right)^{2014}+\frac{5}{2}\)

1 tháng 10 2017

Trần Thị Loan tại sao lại + 5/2?

12 tháng 2 2016

ủng hộ mình lên 280 điểm với các bạn

7 tháng 4 2017

c) Cho B = (1.2.3....2012) . ( 1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{3}\) + ... + \(\dfrac{1}{2012}\) ) Chứng minh B chia hết cho 2013

B = (1.2.3....2012) . (1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{3}\) + ...+ \(\dfrac{1}{2012}\) )

=(1.2.3...671...2012) . (1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{3}\) + ... + \(\dfrac{1}{2012}\))

=(1.2.(3.671)...2012) . (1 + \(\dfrac{1}{2}\) +\(\dfrac{1}{3}\) + ... + \(\dfrac{1}{2012}\))

=(1.2.2013...2012) . (1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{3}\) + ... + \(\dfrac{1}{2012}\))

Vậy B chia hết cho 2013

Đúng đấy, bạn cứ chép vào đi

9 tháng 4 2017

sai rồi

AH
Akai Haruma
Giáo viên
14 tháng 9 2024

Lời giải:
Ta có:

\(A-\frac{1}{2}=\frac{3}{2}+(\frac{3}{2})^2+...+(\frac{3}{2})^{2012}\)

\(\frac{3}{2}(A-\frac{1}{2})=(\frac{3}{2})^2+(\frac{3}{2})^3+....+(\frac{3}{2})^{2013}\\ \Rightarrow \frac{3}{2}(A-\frac{1}{2})-(A-\frac{1}{2})=(\frac{3}{2})^{2013}-\frac{3}{2}\)

$\Rightarrow \frac{1}{2}(A-\frac{1}{2})=(\frac{3}{2})^{2013}-\frac{3}{2}$

$A-\frac{1}{2}=2(\frac{3}{2})^{2013}-3$

$A=2(\frac{3}{2})^{2013}-2,5$

$\Rightarrow A-B=2(\frac{3}{2})^{2013}-2,5-(\frac{3}{2})^{2013}:2$

$=\frac{3}{2}(\frac{3}{2})^{2013}-2,5=(\frac{3}{2})^{2014}-2,5$