Cho tỉ lệ thức x/y = z/t từ đó ta có tỉ lệ thức 2x+3y/2x-3y = 2z+3t/az+bt
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : x/y = z/t => x/z = y/t = 2x+3y/2z+3t = 2x-3y/2z-3t => a=2; b=3
Từ \(\frac{x}{y}=\frac{z}{t}\Rightarrow\frac{x}{z}=\frac{y}{t}\)
\(\Rightarrow\frac{2x}{2z}=\frac{3y}{3t}\)
Theo t/c dãy tỉ số=nhau:
\(\frac{2x}{2z}=\frac{3y}{3t}=\frac{2x+3y}{2z+3t}=\frac{2x-3y}{2z-3t}\Leftrightarrow\frac{2x+3y}{2x-3y}=\frac{2z+3t}{2z-3t}\) (1)
Mà theo đề ta có: \(\frac{2x+3y}{2x-3y}=\frac{2z+3t}{az-bt}\) (20
từ (1);(2) \(\Rightarrow\frac{2z+3t}{2z-3t}=\frac{2z+3t}{az-bt}\Rightarrow2z-3t=az-bt\Rightarrow a=2;b=3\Rightarrow a+b=5\)
Vậy a+b=5
(*) bn sửa lại đề nhé:az-bt chứ ko phải là az+bt
Sửa: \(\dfrac{2x-3y}{4}=\dfrac{3y-4z}{5}=\dfrac{2z-x}{6}\)
\(\Rightarrow\dfrac{2x-3y}{4}=\dfrac{3y-4z}{5}=\dfrac{4z-2x}{12}=\dfrac{2x-3y+3y-4z+4z-2x}{4+5+12}=0\\ \Rightarrow\left\{{}\begin{matrix}2x-3y=0\\3y-4z=0\\4z-2x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x=3y\\3y=4z\\4z=2x\end{matrix}\right.\Rightarrow2x=3y=4z\)
Vậy x,y,z tỉ lệ nghịch với 2;3;4
Có\(\frac{2x-3y}{6}=\frac{2x+3y}{8}\)
\(\Rightarrow\) \(8\left(2x-3y\right)=6\left(2x+3y\right)\)
\(\Rightarrow16x-24y=12x+18y\)
\(\Rightarrow16x-12x=24y+18y\)
\(\Rightarrow4x=42y\)
\(\Rightarrow\frac{x}{y}=\frac{42}{4}\)
Vậy \(\frac{x}{y}=\frac{42}{4}\)
x, y tỉ lệ nghịch vs 2, 3
=> 2.x=3.y=> \(x=\frac{3}{2}y\)
y, z tỉ lệ thuận với 4, 3
=> \(\frac{y}{4}=\frac{z}{3}\Rightarrow z=\frac{3}{4}y\)
Em thay vào tính nhé