Bài 3. Cho góc nhọn xOy , C là điểm trên tia Ox, D là điểm trên tia Oy , sao cho OC = OD. Gọi I là điểm trên tia phân giác Oz của góc xOy , sao cho OI > OC . a)Chứng minh IC = ID và IO là phân giác của góc CID . b) Gọi J là giao điểm của OI và CD , chứng minh OI là đường trung trực của đoạn CD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét Δ OCI và Δ ODI có:
OC=OD (GT)
OI chung
^COI=^DOI (GT)
=>Δ OCI= ΔODI (C-G-C)
TA CÓ :^COI=^DOI (GT)=>OI LÀ TIA PHÂN GIÁC ^COD (ĐPCM)
B) XÉT Δ CJO VÀ Δ DJO có:
OJ CHUNG
OC=OD (GT)
^COJ=^DOJ(GT)
=> Δ CJO = Δ DJO ( C-G-C)
=> ^CJO =^ DJO ( 2 GÓC TƯƠNG ỨNG) (1)
MÀ ^ CJO + ^DJO= 180 ' (2)
TỪ (1) VÀ (2) => ^CJO=^CDO= ^CJD/2= 180'/2= 90'
=> CD VUÔNG GÓC OJ
MẶT KHÁC : JC=JD ( ΔCJO = Δ DJO)
=> OJ LÀ ĐƯỜNG TRUNG TRỰC ( ĐPCM)
NHỚ VOTE CHO TUI 5 SAO NHA CẢM ƠN CÁC BẠN NHIỀU Ạ
a: Xét ΔOCI và ΔODI có
OC=OD
\(\widehat{COI}=\widehat{DOI}\)
OI chung
Do đó: ΔOCI=ΔODI
Suy ra: IC=ID
b: Ta có: ΔOCD cân tại O
mà OH là đường phân giác
nên H là trung điểm của CD
hay CH=DH
gt : - cho góc xOy
- c \(\in Ox\) , D \(\in\) Oy và OC = OD
- I \(\in\) Oz và Góc yOz = zOx
-OI > OC
kl : IC = ID
góc DOI = IOC
OJ là đường trung trực của CD
a) Xét ΔDOI và ΔCOI , có :
OC = OD ( gt )
OI là cạnh chung
góc DOI = góc COI ( Oz là tia phân giác của góc xOy )
=> ΔDOI = ΔCOI ( cgc )
=> IC = ID ( 2 góc tương ứng )
=> góc DIO = góc CIO ( 2 góc tương ứng ) => OI là tia phân giác của góc CID
b)
Xét ΔOJC và ΔOJD , có :
OC = OD ( gt )
OI là cạnh chung
góc DOI = góc COI ( Oz là tia phân giác của góc xOy )
=> ΔCOJ = ΔDOJ ( cgc )
=> DJ = CJ ( 2 cạnh tương ứng ) (1)
=> góc OJD = OJC ( 2 góc tương ứng ) và OJD + OJC = 1800 ( 2 góc kề bù )
=> góc OJD = OJC = \(\frac{180^0}{2}=90^0\) ( 2)
Từ (1) và (2) => OI là đường trung trực của CD
XET tg obc va oad ta co
oc=od
o la goc chung
ob = oa
do đó tg obc = tg oad (c.g.c)
Xét tam giác ODB và tam giác OAC có: OD = OA
góc AOC = góc BOD (=90o)
OB = OC
=> tam giác ODB = tam giác OAC (c.g.c)=> AC = BD (2 cạnh t,ư )
b/Ta có góc DOC + COB = zOx = 90o
AOB + BOC = tOy = 90o
=> góc DOC = AOB mà OD =OA, OC = OB
=> tam giác ODC = OAB (c.g.c) => DC = AB (1)
Dễ có tam giác DCB = ABC (Vì BC chung, DC=AB,DB =AC )
=> góc CDB = CAB (2 góc t.ư) (2)
Dễ có tam giác CDA = BAD (vì AD chung, CD = AB, DB =AC ) => góc DCA = góc DBA (2 góc t.ư) (3)
Từ (1)(2)(3) => tam giác IDC =IAB (g.c.g)
=> ID = IA, IC = IB (cặp canh tương ứng )
Dễ có tam giác OIC = OIB (c.c.c)
=> góc COI = góc BOI (2 góc t.ư)
=> tia OI là phân giác của góc xOy