K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2021

b: Thay x=-3 và y=0 vào y=(m-2)x+3, ta được:

-3m+6+3=0

=>m=3

12 tháng 11 2023

a: Để hàm số nghịch biến trên R thì m-2<0

=>m<2

b: Thay x=-3 và y=0 vào (d), ta được:

-3(m-2)+m+3=0

=>-3m+6+m+3=0

=>-2m+9=0

=>-2m=-9

=>\(m=\dfrac{9}{2}\)

c: Tọa độ giao điểm của y=-x+2 và y=2x-1 là:

\(\left\{{}\begin{matrix}2x-1=-x+2\\y=-x+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=3\\y=-x+2\end{matrix}\right.\)

=>x=1 và y=-1+2=1

Thay x=1 và y=1 vào (d), ta được:

m+2+m+3=1

=>2m+5=1

=>2m=-4

=>m=-4/2=-2

16 tháng 11 2023

a: Thay x=0 và y=2 vào (d), ta được:

\(0\left(m-1\right)+m=2\)

=>m+0=2

=>m=2

b: Thay x=-3 vào y=0 vào (d), ta được:

\(-3\left(m-1\right)+m=0\)

=>-3m+3+m=0

=>-2m+3=0

=>-2m=-3

=>\(m=\dfrac{3}{2}\)

c: Khi m=2 thì (d): \(y=\left(2-1\right)x+2=x+2\)

Khi m=3/2 thì (d): \(y=\left(\dfrac{3}{2}-1\right)x+\dfrac{3}{2}=\dfrac{1}{2}x+\dfrac{3}{2}\)

loading...

Tọa độ giao điểm của hai đường thẳng này là nghiệm của hệ phương trình sau:

\(\left\{{}\begin{matrix}x+2=\dfrac{1}{2}x+\dfrac{3}{2}\\y=x+2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x-\dfrac{1}{2}x=\dfrac{3}{2}-2\\y=x+2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{1}{2}x=-\dfrac{1}{2}\\y=x+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-1+2=1\end{matrix}\right.\)

15 tháng 12 2023

Sửa đề: (d'): y=-4x+3

a: Thay x=0 và y=0 vào y=(m+2)x+m, ta được:

\(0\left(m+2\right)+m=0\)

=>m=0

b:

Sửa đề: Để đường thẳng (d)//(d')

Để (d)//(d') thì \(\left\{{}\begin{matrix}m+2=-4\\m\ne3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m=-6\\m\ne3\end{matrix}\right.\)

=>m=-6

c: Sửa đề: cắt đường thẳng d'

Để (d) cắt (d') thì \(m+2\ne-4\)

=>\(m\ne-6\)

d: Để (d) trùng với (d') thì

\(\left\{{}\begin{matrix}m+2=-4\\m=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-6\\m=3\end{matrix}\right.\)

=>\(m\in\varnothing\)

1: Thay x=-7 và y=0 vào (d), ta được:

-7(m+1)+2m-5=0

=>-7m-7+2m-5=0

=>-5m-12=0

=>m=-12/5

2: Thay x=0 và y=3 vào (d), ta được:

0(m+1)+2m-5=3

=>2m-5=3

=>2m=8

=>m=4

3: Thay x=0 và y=0 vào (d), ta được:

0(m+1)+(2m-5)=0

=>2m-5=0

=>m=5/2

a: Để hàm số đồng biến thì 2m-3>0

hay \(m>\dfrac{3}{2}\)

Để hàm số nghịch biến thì 2m-3<0

hay \(m< \dfrac{3}{2}\)

b: Thay x=2 và y=5 vào hàm số, ta được:

\(\left(2m-3\right)\cdot2+4=5\)

\(\Leftrightarrow2m-3=\dfrac{1}{2}\)

\(\Leftrightarrow2m=\dfrac{7}{2}\)

hay \(m=\dfrac{7}{4}\)

27 tháng 8 2021

các phần khác đâu bạn??

 

31 tháng 5 2021

a)Đồ thị hàm số cắt trục tung tại điểm có tung độ bằng 2

\(\Rightarrow2=\left(m-2\right).0+m\) \(\Leftrightarrow m=2\)

Vậy m=2 thì đồ thị hàm số cắt trục tung tại điểm có tung độ bằng 2

b) Đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng -3

\(\Rightarrow0=\left(m-2\right)\left(-3\right)+m\) \(\Leftrightarrow m=3\)

Vậy...

c) Hàm số đi qua điểm A(1;2)

\(\Rightarrow2=\left(m-2\right).1+m\)\(\Leftrightarrow m=2\)

Vậy...

31 tháng 5 2021

a) Đồ thị cắt trục tung tại điểm có tung độ bằng 2 

\(\Rightarrow\) điểm đó có tọa độ là \(\left(0;2\right)\)

\(\Rightarrow2=m\)

b) Đồ thị cắt trục hoành tại điểm có hoành độ bằng -3 

\(\Rightarrow\) điểm đó có tọa độ là \(\left(-3;0\right)\)

\(\Rightarrow0=-3m+6+m=-2m+6\Rightarrow m=3\)

c) Đồ thị đi qua điểm \(A\left(1;2\right)\)

\(\Rightarrow2=m-2+m\Rightarrow m=2\)

11 tháng 10 2021

a: Để hàm số nghịch biến thì m-2<0

hay m<2

b: Thay x=3 và y=0 vào hàm số, ta được:

\(3m-6+m+3=0\)

hay \(m=\dfrac{3}{4}\)

16 tháng 11 2021

\(a,\Leftrightarrow y=0;x=2\Leftrightarrow2m-2+m-2=0\Leftrightarrow m=\dfrac{4}{3}\)

\(b,\) PT giao Ox: \(\Leftrightarrow\left(m-1\right)x=2-m\Leftrightarrow x=\dfrac{2-m}{m-1}\Leftrightarrow A\left(\dfrac{2-m}{m-1};0\right)\Leftrightarrow OA=\left|\dfrac{2-m}{m-1}\right|\)

PT giao Oy: \(y=m-2\Leftrightarrow B\left(0;m-2\right)\Leftrightarrow OB=\left|m-2\right|\)

\(S_{OAB}=\dfrac{2}{3}\Leftrightarrow\dfrac{1}{2}OA\cdot OB=\dfrac{2}{3}\Leftrightarrow\left|\dfrac{2-m}{m-1}\cdot\left(m-2\right)\right|=\dfrac{4}{3}\\ \Leftrightarrow\left|\dfrac{-\left(m-2\right)^2}{m-1}\right|=\dfrac{4}{3}\Leftrightarrow\left[{}\begin{matrix}\dfrac{-\left(m-2\right)^2}{m-1}=\dfrac{4}{3}\left(1\right)\\\dfrac{-\left(m-2\right)^2}{1-m}=\dfrac{4}{3}\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow-3m^2+12m-12=4m-4\\ \Leftrightarrow3m^2-9m+9=0\\ \Leftrightarrow m\in\varnothing\\ \left(2\right)\Leftrightarrow-3m^2+12m-12=4-4m\\ \Leftrightarrow3m^2-16m+16=0\\ \Leftrightarrow\left[{}\begin{matrix}m=4\\m=\dfrac{4}{3}\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}m=4\\m=\dfrac{4}{3}\end{matrix}\right.\) thỏa đề

\(c,\) Gọi \(E\left(x_0;y_0\right)\) là điểm cần tìm

\(\Leftrightarrow\left(m-1\right)x_0+m-2=y_0\\ \Leftrightarrow mx_0+m-x_0-y_0-2=0\\ \Leftrightarrow m\left(x_o+1\right)-\left(x_0+y_0+2\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_0=-1\\y_0=-2-x_0=-1\end{matrix}\right.\Leftrightarrow E\left(-1;-1\right)\)