K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2021

Bài 2: Tính giá trị của biểu thức sau:

\(16x^2-y^2=\left(4x+y\right)\left(4x-y\right)\)

Thay \(\hept{\begin{cases}x=87\\y=13\end{cases}}\)

\(\Rightarrow\left(4.87+13\right)\left(4.87-13\right)=361.335=120935\)

2 tháng 10 2021

Bài 4: Tìm x

a) \(9x^2+x=0\)

\(\Rightarrow x\left(9x+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\9x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{-1}{9}\end{cases}}\)

b) \(27x^3+x=0\)

\(\Rightarrow x\left(27x^2+1=0\right)\)

\(\Rightarrow\orbr{\begin{cases}x=0\\27x^2+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\27x^2=\left(-1\right)\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x^2=\frac{-1}{27}\end{cases}}\)

Ta có: \(\frac{-1}{27}\) loại vì \(x^2\ge0\forall x\)

Vậy \(x=0\)

9 tháng 11 2023

\(a,A=2x^3y-3xy^2+5x^3y-xy^2+2\\=(2x^3y+5x^3y)+(-3xy^2-xy^2)+2\\=7x^3y-4xy^2+2\)

Bậc của đa thức A: 3 + 1 = 4.

\(b,\) Thay \(x=1;y=-1\) vào \(A\), ta được:

\(A=7\cdot1^3\cdot\left(-1\right)-4\cdot1\cdot\left(-1\right)^2+2\)

\(=-7-4+2=-9\)

12 tháng 6 2021

a. \(A+B=x^2-2x-y^2+3y-1-2x^2+3y^2-5x+y+3\)

\(=\left(x^2-2x^2\right)-\left(2x+5x\right)+\left(3y^2-y^2\right)+\left(3y+y\right)+\left(3-1\right)\)

\(=2y^2+4y-x^2-7x+2\)

Thay `x = 2` và `y = -1` vào `A + B` ta được:

\(2.\left(-1\right)^2+4.\left(-1\right)-2^2-7.2+2=-18\)

b. \(A-B=x^2-2x-y^2+3y-1-\left(-2x^2+3y^2-5x+y+3\right)\)

\(=x^2-2x-y^2+3y-1+2x^2-3y^2+5x-y-3\)

\(=\left(x^2+2x^2\right)+\left(5x-2x\right)-\left(y^2+3y^2\right)+\left(3y-y\right)-\left(1+3\right)\)

\(=3x^2+3x-4y^2+2y-4\)

Thay `x = -2` và `y = 1` vào `A - B` ta được:

\(3.\left(-2\right)^2+3.\left(-2\right)-4.1^2+2.1^2-4=0\)

5 tháng 10 2023

Ta có:

\(P=4x^2y^2-3xy^3+5x^2y^2-5xy^3-xy+x-1\)

\(P=\left(4x^2y^2+5x^2y^2\right)-\left(3xy^3+5xy^3\right)-xy+x-1\)

\(P=9x^2y^2-8xy^3-xy+x-1\)

Bậc của đa thức P là: \(2+2=4\)

Thay x=-1 và y=2 vào P ta có:

\(P=9\cdot\left(-1\right)^2\cdot2^2-8\cdot-1\cdot2^3-\left(-1\right)\cdot2+\left(-1\right)-1=100\)

\(Q=-4x^2y^2-xy+4xy^3+2xy-6x^3y-4x^3y\)

\(Q=-4x^2y^2-\left(xy-2xy\right)+4xy^3-\left(6x^3y+4x^3y\right)\)

\(Q=-4x^2y^2+xy+4xy^3-10x^3y\)

Bậc của đa thức Q là: \(2+2=4\)

Thay x=-1 và y=2 vào Q ta có:

\(Q=-4\cdot\left(-1\right)^2\cdot2^2+\left(-1\right)\cdot2+4\cdot-1\cdot2^3-10\cdot\left(-1\right)^3\cdot2=-30\)

5 tháng 10 2023

Chúc mừng bạn vào CTV ngầu quá

23 tháng 11 2021

\(\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}\le0\\ \Leftrightarrow\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}=0\\ \Leftrightarrow\left\{{}\begin{matrix}\left(2x-5\right)^{2018}=0\\\left(3y+4\right)^{2020}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{2}\\y=-\dfrac{4}{3}\end{matrix}\right.\\ \Leftrightarrow M=6x^2+9xy-y^2-5x^2+2xy=x^2+11xy-y^2\\ \Leftrightarrow M=\dfrac{25}{4}-11\cdot\dfrac{4}{3}\cdot\dfrac{5}{2}-\dfrac{16}{9}=\dfrac{25}{4}-\dfrac{110}{3}-\dfrac{16}{9}=-\dfrac{1159}{36}\)

23 tháng 11 2021

Em cảm ơn.

M=6x^2+9xy-y^2-5x^2+2xy=x^2+11xy-y^2
(2x-5)^2020+(3y+4)^2022<=0

=>x=5/2 và y=-4/3

M=25/4+11*5/2*(-4/3)-16/9=-1159/36