K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
4 tháng 3 2021

\(\left\{{}\begin{matrix}\overrightarrow{OA}=\left(3;6\right)\\\overrightarrow{AB}=\left(x-3;-8\right)\end{matrix}\right.\)

Để OA vuông góc AB \(\Leftrightarrow\overrightarrow{OA}.\overrightarrow{AB}=0\)

\(\Leftrightarrow3\left(x-3\right)-48=0\)

\(\Rightarrow x=19\)

NV
4 tháng 3 2021

Gọi \(M\left(m;0\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{MA}=\left(1-m;1\right)\\\overrightarrow{MB}=\left(-2-m;4\right)\end{matrix}\right.\)

\(\Rightarrow\overrightarrow{MA}-2\overrightarrow{MB}=\left(m+5;-7\right)\)

\(\Rightarrow\left|\overrightarrow{MA}-2\overrightarrow{MB}\right|=\sqrt{\left(m+5\right)^2+49}\ge7\)

Dấu "=" xảy ra khi \(m+5=0\Leftrightarrow m=-5\) hay \(M\left(-5;0\right)\)

4 tháng 3 2021

Cảm ơn rất nhìu ạ

9 tháng 12 2017

16 tháng 7 2017

27 tháng 11 2017

Đáp án B

NV
22 tháng 11 2019

\(\overrightarrow{AB}=\overrightarrow{AC}+\overrightarrow{CB}=\overrightarrow{AC}+\overrightarrow{CD}+\overrightarrow{DB}=\overrightarrow{AC}-\overrightarrow{AB}-\overrightarrow{BD}\)

\(\Rightarrow2\overrightarrow{AB}=\overrightarrow{AC}-\overrightarrow{BD}\Rightarrow\overrightarrow{AB}=\frac{1}{2}\left(\overrightarrow{AC}-\overrightarrow{BD}\right)=\left(5;-\frac{7}{2}\right)\)

22 tháng 11 2019

A,(2;1) B(-2;-1) C(-5;4) D (5;-4)

22 tháng 11 2019

Áp dụng quy tắc hình bình hành ta có:

\(\left\{{}\begin{matrix}\overrightarrow{AB}+\overrightarrow{AD}=\widehat{AC}\\\overrightarrow{AD}-\overrightarrow{AB}=\overrightarrow{BD}\end{matrix}\right.\)

Từ hệ trên suy ra:
\(\overrightarrow{2AB}=\left(\overrightarrow{AB}+\overrightarrow{AD}\right)-\left(\overrightarrow{AD}-\overrightarrow{AB}\right)=\overrightarrow{AC}-\overrightarrow{BD}\)

\(\Leftrightarrow\overrightarrow{AB}=\frac{1}{2}\left(\overrightarrow{AC}-\overrightarrow{BD}\right)=\frac{1}{2}\left[7-\left(-3\right);-3-4\right]=\left(5;\frac{-7}{2}\right)\)