K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2016

Ta có: B= 5/n-3

Để B là số nguyên thì 5 chia hết cho n-3

=> n-3 thuộc {-5;-1;1;5}

=> n thuộc {-2;2;4;8}

Đúng thì k giùm nha

22 tháng 3 2020

Giải :

Để B là 1 số nguyên thì n+1\(⋮\)n

Ta có : n+1\(⋮\)n

Mà n\(⋮\)n nên 1\(⋮\)n

\(\Rightarrow n\inƯ\left(1\right)=\left\{\pm1\right\}\)

Vậy \(n\in\left\{\pm1\right\}\)

2 tháng 12 2016

LƯU Ý

Các bạn học sinh KHÔNG ĐƯỢC đăng các câu hỏi không liên quan đến Toán, hoặc các bài toán linh tinh gây nhiễu diễn đàn. Online Math có thể áp dụng các biện pháp như trừ điểm, thậm chí khóa vĩnh viễn tài khoản của bạn nếu vi phạm nội quy nhiều lần.

Chuyên mục Giúp tôi giải toán dành cho những bạn gặp bài toán khó hoặc có bài toán hay muốn chia sẻ. Bởi vậy các bạn học sinh chú ý không nên gửi bài linh tinh, không được có các hành vi nhằm gian lận điểm hỏi đáp như tạo câu hỏi và tự trả lời rồi chọn đúng.

Mỗi thành viên được gửi tối đa 5 câu hỏi trong 1 ngày

Các câu hỏi không liên quan đến toán lớp 1 - 9 các bạn có thể gửi lên trang web h.vn để được giải đáp tốt hơn.

2 tháng 12 2016
  • hghjhjhjgjg bị hâm à
20 tháng 2 2020

Bài 2:

a) Để B là phân số thì n -3 \(\ne\)0 => n\(\ne\)3

b) Để B có giá trị là số nguyên thì n+4 \(⋮\)n-3

\(\frac{n+4}{n-3}\)\(\frac{n-3+7}{n-3}\)\(\frac{7}{n-3}\)Vì n+4 \(⋮\)n-3 nên 7 \(⋮\)n-3

=> n-3 \(\in\)Ư(7) ={ 1;7; -1; -7}

=> n\(\in\){ 4; 10; 2; -4}

Vậy...

c) Bn thay vào r tính ra

20 tháng 2 2020

la 120

Để A là số nguyên thì 3n+5 chia hết cho n+4

=>3n+12-7 chia hết cho n+4

=>n+4 thuộc {1;-1;7;-7}

=>n thuộc {-3;-5;3;-11}

25 tháng 1 2022

\(B=\dfrac{n}{n-4}=\dfrac{n-4+4}{n-4}=1+\dfrac{4}{n-4}\Rightarrow n-4\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

n - 41-12-24-4
n536280

 

25 tháng 1 2022

\(B=\dfrac{n}{n-4}=\dfrac{n-4+4}{n-4}=1+\dfrac{4}{n-4}\)

\(Để.B\in Z\Rightarrow\dfrac{4}{n-4}\in Z\Rightarrow n-4\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\Rightarrow n\in\left\{0;2;3;5;6;8\right\}\)

19 tháng 2 2022

Để \(B\in Z\)

\(\Rightarrow\dfrac{n+4}{n-3}\in Z\\ \Rightarrow\dfrac{n-3+7}{n-3}\in Z\Rightarrow1+\dfrac{7}{n-3}\in Z\)

Mà \(1\in Z\Rightarrow\dfrac{7}{n-3}\in Z\Rightarrow n-3\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Ta có bảng:
 

 n-3  -7  -1  1  7 
  n -4 2 4 10

Mà \(n\in N\Rightarrow n\in\left\{2;4;10\right\}\)

19 tháng 2 2022

\(B=\dfrac{n+4}{n-3}=\dfrac{n-3+7}{n-3}=1+\dfrac{7}{n-3}\Rightarrow n-3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

n-31-17-7
n4210-4(loại)

 

6 tháng 6 2015

a/để A là phân số =. n-1 khác 0

=>n khác 1

vậy với n khác 1 thì A là phân số

b/ để A nguyên => 5 chia hết cho n-1

=>n-1 thuộc Ư(5)={-1,-5,1,5}

nếu n-1=1=>n=2

nếu n-1=-1=>n=0

nếu n-1=-5=>n=-4

nếu n-1=5=>n=6

vậy với n={2,0,-4,6} thì A nguyên

6 tháng 6 2015

nhầm đôi chỗ

a)n1

b Để A là số nguyên thì 5 phải chia hết cho n - 1 => n - 1 Ư(5)

Ư(5)= {1;-1;5;-5}

Nếu n-1=1 => n=2                                     n-1= -1 => n= 0

n-1= 5 => n= 6                                           n-1= -5 => n= -4

đúng mình nha 

30 tháng 1 2022

a, đk : n khác 2 

b, Với n = 0 => \(A=\dfrac{0+4}{0-2}=\dfrac{4}{-2}=-2\)

Với n = -2 => \(A=\dfrac{-2+4}{-2-2}=\dfrac{2}{-4}=-\dfrac{1}{2}\)

Với n = 4 => \(A=\dfrac{4+4}{4-2}=\dfrac{8}{2}=4\)

c, \(A=\dfrac{n+4}{n-2}=\dfrac{n-2+6}{n-2}=1+\dfrac{6}{n-2}\Rightarrow n-2\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

n - 21-12-23-36-6
n31405-18-4

 

a: Để phân số A có nghĩa thì n-2<>0

hay n<>2

b: Thay n=0 vào A, ta được:

\(A=\dfrac{0+4}{0-2}=-2\)

Thay n=-2 vào A, ta được:

\(A=\dfrac{-2+4}{-2-2}=\dfrac{2}{-4}=-\dfrac{1}{2}\)

Thay n=4 vào A, ta được:

\(A=\dfrac{4+4}{4-2}=\dfrac{8}{2}=4\)

c: Để A là số nguyên thì \(n-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

hay \(n\in\left\{3;1;4;0;5;-1;8;-4\right\}\)

AH
Akai Haruma
Giáo viên
25 tháng 8

Lời giải:

a. Để $B$ là phân số thì $n-4\neq 0$

$\Rightarrow n\neq 4$

b. Với $n$ nguyên, để $B$ nguyên thì:

$n\vdots n-4$

$\Rightarrow (n-4)+4\vdots n-4$

$\Rightarrow 4\vdots n-4$

$\Rightarrow n-4\in \left\{\pm 1; \pm 2; \pm 4\right\}$

$\Rightarrow n\in \left\{5; 3; 6; 2; 8; 0\right\}$