s=3/1.4+3/4.7+3/7.10+...+3/n(n+3).chứng minh s<1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có S = 1-1/4 + 1/4 - 1/7 =....................................+1/n - 1/(n+1) = 1- 1/(n+1)
mà n thuộc N* nên S<1
ta có \(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{\left(n+3\right)}\)
\(S=1-\frac{1}{\left(n+3\right)}\)
thì đương nhiên S nhỏ hơn 1 rồi
\(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{40.43}+\frac{3}{43.46}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{40}-\frac{1}{43}+\frac{1}{43}-\frac{1}{46}\)
\(=1-\frac{1}{46}<1\)
Vậy S<1 (ĐPCM)
\(S=\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3n}{n\left(n+3\right)}\)
\(S=\frac{4-1}{1\cdot4}+\frac{7-4}{4\cdot7}+\frac{10-7}{7\cdot10}+...+\frac{n+3-3}{n\left(n+3\right)}\)
\(S=\frac{4}{1\cdot4}-\frac{1}{1\cdot4}+\frac{7}{4\cdot7}-\frac{4}{4\cdot7}+...+\frac{n+3}{n\left(n+3\right)}-\frac{n}{n\left(n+3\right)}\)
\(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{n}-\frac{1}{n-3}\)
\(S=1-\frac{1}{n-3}=\frac{n-3}{n-3}-\frac{1}{n-3}=\frac{n-3-1}{n-3}=\frac{n-2}{n-3}< 1\)
bé hơn 1 chứ ko lớn hơn 1 đc đâu
S=\(\dfrac{3}{1.4}\)+\(\dfrac{3}{4.7}\)+\(\dfrac{3}{7.10}\)+...+\(\dfrac{3}{43.46}\)
S<\(\dfrac{1}{1}\)-\(\dfrac{1}{4}\)+\(\dfrac{1}{4}\)-\(\dfrac{1}{7}\)+...+\(\dfrac{1}{43}\)-\(\dfrac{1}{46}\)
S< \(\dfrac{1}{1}\)-\(\dfrac{1}{46}\)
S<\(\dfrac{45}{46}\)<1
Vậy S< 1
Chúc bạn học tốt , tick cho mk nhé
\(S=\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{34.46}\)
\(S=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{43}-\dfrac{1}{46}\)
\(S=1-\dfrac{1}{46}\)
\(S=\dfrac{45}{46}< 1\)
\(S=\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{34.46}< 1\)
\(\Rightarrow S< 1\) (đpcm)
ta có \(S=\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{n.\left(n+3\right)}\)
\(\Rightarrow S=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{n}-\frac{1}{n+3}\)
\(S=\frac{1}{1}-\frac{1}{n+3}\)
\(S=\frac{n+3}{n+3}-\frac{1}{n+3}=\frac{n+3-1}{n+3}=\frac{n+2}{n+3}<1\)
Bao quynh Cao, giúp mk với !!!
Bài 1: Chứng minh rằng A<B<1 biết:
A = 3/1.4+3/4. … . 3/n.(n+1).
B = 1/^2+1/3^2+1/4^2+ … + 1/n^2.
Bài 2: Cho S = 3/10+3/11+3/12+3/13+3/14. Chứng minh rằng 1<S<2. Từ đó suy ra S không phải là số tự nhiên.
Bài 3: Chứng minh rằng 3/5<S<4/5 với S = 1/31+1/32+1/33+…+1/60.
Các bạn nhớ giải đầy đủ và theo cách của Toán lớp 6 nâng cao nhé!
Ta có
\(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)
\(S=1-\frac{1}{n+3}< 1\)(vì n thuộc N*)
_Kudo_
Ta có:
\(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{n.\left(n+3\right)}\)
\(\Leftrightarrow S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)
\(\Leftrightarrow S=1-\frac{1}{n+3}\)
\(\Leftrightarrow S=\frac{n+3}{n+3}-\frac{1}{n+3}=\frac{n+3-1}{n+3}=\frac{n+2}{n+3}\)
\(\Rightarrow\frac{n+2}{n+3}< 1\Rightarrow S< 1\)
Do : \(\frac{3}{1.4}=\frac{1}{1}-\frac{1}{4};\frac{3}{4.7}=\frac{1}{4}-\frac{1}{7}\).... tuong tu ... \(\frac{3}{n\left(n+3\right)}=\frac{1}{n}-\frac{1}{n+3}\)
S= \(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{n-3}-\frac{1}{n}+\frac{1}{n}-\frac{1}{n+3}\)
S= \(1-\frac{1}{n+3}\)<1
=> S<1 (dpcm)
(do : 3/ 1.4 = 1/1 - 1/4; 3/4.7= 1/4 - 1/7 ...
S= 1- 1/4 + 1/4 + 1/4 - 1/7 + ... + 1/ n - 1/ (n+3)
S= 1- 1/ (n+3) <1
=> S <1 (dpcm)