K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2021

a: Xét tứ giác AMEN có 

\(\widehat{AME}=\widehat{ANE}=\widehat{MAN}=90^0\)

Do đó: AMEN là hình chữ nhật

Suy ra: AE=NM

19 tháng 1 2019

đề \(sai\) \(bn\) \(ơi\)

19 tháng 1 2019

trên nửa mp AB,AC ko chứa điểm B,C nhầm nha

10 tháng 11 2023

A B C H E F M N

a/

Ta có

\(\widehat{A}=90^o;\widehat{MHN}=90^o\) => A và H cùng nhìn MN dưới 1 góc vuông nên A; H thuộc đường tròn đường kính MN => A; M; H; N cùng thuộc 1 đường tròn

Xét tg vuông AHC có

\(MA=MC\Rightarrow HM=MA=MC=\dfrac{AC}{2}\) (trong tg vuông trung tuyến thuộc cạnh huyền bằng nửa cạnh huyền)

=> tg AMH cân tại M \(\Rightarrow\widehat{MAH}=\widehat{MHA}\)

 \(\widehat{NAH}+\widehat{MAH}=\widehat{A}=90^o\)

\(\widehat{NHA}+\widehat{MHA}=\widehat{MHN}=90^o\)

\(\Rightarrow\widehat{NAH}=\widehat{NHA}\) => tg NAH cân tại N => NA=HN (1)

Xét tg vuông ABH có

\(\widehat{NAH}+\widehat{B}=90^o\)

\(\widehat{NHA}+\widehat{NHB}=\widehat{AHB}=90^o\)

Mà \(\widehat{NAH}=\widehat{NHA}\) (cmt)

\(\Rightarrow\widehat{B}=\widehat{NHB}\) => tg BHN cân tại N => NB=HN (2)

Từ (1) và (2) => NA=NB => N là trung điểm AB

b/

Ta có

NA=NB (cmt); MA=MC (gt) => MN là đường trung bình của tg ABC

=> MN//BC

Gọi O là giao của MN với AH. Xét tg ABH có

MN//BC => NO//BH

NA=NB (cmt)

=> OA=OH (trong tg đường thẳng đi qua trung điểm 1 cạnh và // với 1 cạnh thì đi qua trung điểm cạnh còn lại) => O à trung điểm AH

Ta có

\(HE\perp AB\left(gt\right);AC\perp AB\left(gt\right)\) => HE//AC => HE//AF

\(HF\perp AC\left(gt\right);AB\perp AC\left(gt\right)\) => HF//AB => HF//AN

=> AEHF là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)

Gọi O' là giao của EF với AH => O'A=O'H (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường) => O' là trung điểm của AH

Mà O cũng là trung điểm của AH (cmt)

=> \(O'\equiv O\) => AH; MN; EF cùng đi qua O

 

 

 

27 tháng 11 2015

Bạn tự vẽ hình nhé!

a) Xét tam giác vuông  ABH có: góc ABH + BAH = 90o

Lại có: góc EAM + BAH = 90(do góc EAB = 90o)

=> góc ABH = EAM 

Xét tam giác vuông ABH và EAM có: góc ABH = EAM ; cạnh AB = EA

=> tam giác vuông ABH = EAM (cạnh huyền - góc nhọn)

=> BH = AM ;AH =  EM

Ta có HM = AM + AH = BH + EM

Tương tự, tam giác vuông ANF = CHA => AN = CH; NF = HA

Ta có: HN = HA + AN = NF + CH

b) Ta có: EM = NF ( = cùng = HA)

góc IEM = IFN (2 góc So le trong do FN // EM)

Mà góc FNI = IME (= 90o)

=> tam giác INF = IME ( g- c - g)

=> IN = IM => I là trung điểm của EF

 

10 tháng 6 2022

ạn có thể vẽ hình ra dc ko mình ko hiểu lắm

 

a: Xét ΔADB và ΔADE có

AD chung

góc BAD=góc EAD

AB=AE

=>ΔABD=ΔAED

b: Xét ΔBHD vuông tại H và ΔEKD vuông tại K có

DB=DE

góc DBH=góc DEK

=>ΔBHD=ΔEKD

=>BH=EK

c: góc DEM=góc KDE

góc KDE=góc BDH

=>góc DEM=góc BDH

d: góc DEM+góc ACD

=góc BDH+góc ACD

=90 độ-góc CDE

a: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(AH^2=HB\cdot HC\left(1\right)\)

Xét ΔABH vuông tại H có HE là đường cao ứng với cạnh huyền AB

nên \(AH^2=AE\cdot AB\left(2\right)\)

Xét ΔACH vuông tại H có HF là đường cao ứng với cạnh huyền AC

nên \(AH^2=AF\cdot AC\left(3\right)\)

Từ (1), (2) và (3) suy ra \(AE\cdot AB=AF\cdot AC=BH\cdot HC\)