CMR: A= 2+2^2+2^3+.....+2^59+2^60. chia hết cho 42. giúp mk nha ^.^. cảm ơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Co Gai De Thuong
A = 2 + 22 + 23 + ... + 299 + 2100
= ( 2 + 22 + 23 + 24 + 25 ) + ... + ( 296 + 297 + 298 + 299 + 2100 )
= 2 x ( 1 + 2 + 22 + 23 + 24 ) + ... + 296 x ( 1 + 2 + 22 + 23 + 24 )
= 2 x 31 + ... + 296 x 31
= 31 ( 2 + ... + 296 )
Vậy A chia hết cho 31
A = 2 + 22 + 23 + 24 + 25 + .... + 296 + 297 + 298 + 299 + 2100
A = [2 + 22 + 23 + 24 + 25] + ... + 295[2 + 22 + 23 + 24 + 25]
A = 62 + ... + 295.62
A = 2.31 + .... + 295.2.31
A = 31.2.[20 + 25 + ... +295]
=> A \(⋮31\)
a) A = 2 + 2^2 + ... + 2^58 + 2^59 + 2^60
A = 2 ( 2 + 1 ) + 2^3 ( 2 + 1 ) + ... + 2^59 ( 2 + 1)
A = 3 .2 + 3.2^3 + ... + 3.2^59
A = 3 ( 2 + 2^3 + ... + 2^59 ) luôn chia hết cho 3
Ta có A = 2+22 + 23 + .....+ 259 + 260
= ( 2+ 22 + 23) +....+ (258 + 259 + 260)
= 2(1+2+4) +....+ 258( 1+2+4)
= 2 .7+24.7 +....+ 258 . 7
= 7( 2+24 + ....+ 258)
=> A chia hết cho 7
= \(\left(7+7^2+7^3\right)+...+\left(7^{58}+7^{59}+7^{60}\right)\)
= \(7\left(1+7+7^2\right)+...+7^{58}\left(1+7+7^2\right)\)
= \(57.7+...+57.7^{58}\) \(⋮57\)
\(=7\left(1+7+7^2\right)+...+7^{58}\left(1+7+7^2\right)\)
\(=57\cdot\left(1+...+7^{58}\right)⋮57\)
\(A=2+2^2+2^3+...+2^{59}+2^{60}\)
Có 60 số hạng.
1./ 60 chia hết cho 2 nên A tính được theo cặp 2 số liên tiếp:
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)=2\cdot\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)\)
=> A chia hết cho 3.
2./ Tương tự, 60 chia hết cho 3 nên A tính được theo bộ 3 số liên tiếp: và bạn cũng suy ra A chia hết cho 7.
3./ Tương tự, 60 chia hết cho 4 nên A tính được theo bộ 4 số liên tiếp: và bạn cũng suy ra A chia hết cho 15.
a) A= (2+22)+(23+24)+........(259+260)
= 1(2+22) + 22(2+22) + ....... 258(2+22)
= 1.6 + 22.6 +......... 258.6
=6(1+22+.......258)
Vì 6 chia hết cho 3 nên => 6(1+22+........258)
Các câu còn lại cũng tương tự như vậy nha bn!
Ta có: \(42=2.3.7\)nên để chứng minh \(A\)chia hết cho \(42\)thì ta chứng minh \(A\)chia hết cho \(2,3,7\).
- Vì \(A\)là tổng của các số hạng chia hết cho \(2\)nên \(A⋮2\).
- \(A=2+2^2+2^3+...+2^{60}\)
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)
\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)\)
\(A=3\left(2+2^3+...+2^{59}\right)⋮3\).
- \(A=2+2^2+2^3+...+2^{60}\)
\(A=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)
\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(A=7\left(2+2^4+...+2^{58}\right)⋮7\)
Từ đây ta có đpcm.