Với giá trị nào của m thì KHÔNG tồn tại giá trị của x để f(x) = m x + m = 2x LUÔN âm.
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
CT
1
NV
Nguyễn Việt Lâm
Giáo viên
30 tháng 3 2023
\(2x^2+3x-\left(m-1\right)>0;\forall x\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=2>0\\\Delta=9+8\left(m-1\right)< 0\end{matrix}\right.\)
\(\Rightarrow m< -\dfrac{1}{8}\)
Lời giải:
Sửa $f(x)=mx+m-2x=x(m-2)+m$
Với $m=2$ thì $f(x)=2>0$ với mọi $x$, tức là không có giá trị thực nào của $x$ để $f(x)$ âm (thỏa mãn)
Với $m\neq 2$ thì đồ thị $f(x)=x(m-2)+m$ là 1 đường thẳng tiếp tuyến, luôn tồn tại giá trị của $x$ để $f(x)$ âm.
Vậy $m=2$
$f(x)=mx+m=2x$? Bạn có ghi nhầm đề không nhỉ?