K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
25 tháng 10 2024

Lời giải:

Áp dụng định lý Bezout về phép chia đa thức, số dư của $f(x)=x^3+ax+b$ chia $x+1$ và $x-2$ lần lượt là $f(-1)$ và $f(2)$.

Ta có:

$f(-1)=(-1)^3+a(-1)+b=7$

$\Rightarrow -a+b=8(1)$

$f(2)=2^3+2a+b=8+2a+b=4$

$\Rightarrow 2a+b=-4(2)$

Lấy $(1) - (2)\Rightarrow -3a=12\Rightarrow a=-4$

$b=8+a=8+(-4)=4$

Vậy........

12 tháng 7 2017

Để x 3 + ax + b chia cho x + 1 dư 7 thì b – a – 1 = 7 ó -a + b = 8 (1)

Để x 3 + ax + b chia cho x – 3 dư -5 thì b + 3a + 27 = -5 ó 3a + b = -32 (2)

Từ (1) và (2) ta có hệ - a + b = 8 3 a + b = - 32 ó  a = - 10 b = - 2

Vậy a = -10, b = -2

Đáp án cần chọn là: C

13 tháng 6 2017

đặt f(x) = x3 + ax + b.

f(x) chia cho x + 1 dư 7 nên f(-1) = 7 hay -a + b - 1 = 7.

f(x) chia x - 3 dư -5 nên f(3) = -5 hay 3a + b + 27 = -5.

giải hệ trên tìm được a và b.
 

11 tháng 2 2018

Gọi thương của phép chia  \(x^3+ax+b\)   cho  \(x+1\)là   \(A\left(x\right)\);   cho  \(x-2\)là     \(B\left(x\right)\)

Ta có:    \(f\left(x\right)=x^3+ax+b=\left(x+1\right).A\left(x\right)+7\)

             \(f\left(x\right)=x^3+ax+b=\left(x-2\right).B\left(x\right)+4\)

Theo định lý  Bơ-du ta có:

          \(f\left(-1\right)=-1-a+b=7\)

        \(f\left(2\right)=8+2a+b=4\)

suy ra:   \(a=-4;\)   \(b=4\)

Vậy...