K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
25 tháng 10 2024

Lời giải:

Áp dụng định lý Bezout về phép chia đa thức, số dư của $f(x)=x^3+ax+b$ chia $x+1$ và $x-2$ lần lượt là $f(-1)$ và $f(2)$.

Ta có:

$f(-1)=(-1)^3+a(-1)+b=7$

$\Rightarrow -a+b=8(1)$

$f(2)=2^3+2a+b=8+2a+b=4$

$\Rightarrow 2a+b=-4(2)$

Lấy $(1) - (2)\Rightarrow -3a=12\Rightarrow a=-4$

$b=8+a=8+(-4)=4$

Vậy........

13 tháng 6 2017

đặt f(x) = x3 + ax + b.

f(x) chia cho x + 1 dư 7 nên f(-1) = 7 hay -a + b - 1 = 7.

f(x) chia x - 3 dư -5 nên f(3) = -5 hay 3a + b + 27 = -5.

giải hệ trên tìm được a và b.
 

22 tháng 10 2018

undefinedundefinedMời các god xơi câu c