1. Tính giá trị:
B = x15
2. Cho ba số tự nhiên liên tiếp. Tích của hai số đầu nhỏ hơn tích của hai số
sau là 50. Hỏi đã cho ba số nào ?
+ 8x13
- 8x14
- 8x12 + ... - 8x2
+ 8x – 5 với x = 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Ta có: \(8=7+x=x+1\)
\(B=x^{15}-8x^{14}+8x^{13}-...-8x^2+8x-5\)
\(\Rightarrow B=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-...-\left(x+1\right)x^2+\left(x+1\right)x-5\)
\(\Rightarrow B=x^{15}-x^{15}-x^{14}+x^{14}-x^{13}-...-x^3-x^2+x^2+x-5\)
\(\Rightarrow B=x-5\)
\(\Rightarrow B=7-5\)
\(\Rightarrow B=2\)
gọi 3 số tự nhiên liên tiếp là \(a,a+1,a+2\)
ta có: \(a\left(a+1\right)=\left(a+1\right)\left(a+2\right)-50\\ \Leftrightarrow a^2+a=a^2+3a+2-50\\ \Leftrightarrow-2a=-48\\ \Leftrightarrow a=24\)
\(\Rightarrow a+1=25;a+2=26\)
Vậy 3 số tự nhiên liên tiếp là \(24;25;26\)
`B = x^15 - 8x^14 + 8x^13 - 8x^122 + ... - 8x^2 + 8x - 5`
`B = x^15 - 7x^14 -x^14+7x^13+x^13-7x^12-...-x^2+7x+x-5`
`B = x^14(x-7) - x^14(x-7) +...+x^2(x-7)-x(x-7)+x-5`
`B = 7-5=2`
1. Vì \(x=7\)\(\Rightarrow x+1=8\)
\(\Rightarrow A=x^{15}-8x^{14}+8x^{13}-8x^{12}+.......-8x^2+8x-5\)
\(=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-.......-\left(x+1\right)x^2+\left(x+1\right)x-5\)
\(=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-......-x^3-x^2+x^2+x-5\)
\(=x-5=7-5=2\)
2. Gọi 3 số cần tìm lần lượt là \(a\), \(a+1\), \(a+2\)( \(a\inℕ\))
Tích của 2 số đầu là: \(a\left(a+1\right)\)
Tích của 2 số sau là: \(\left(a+1\right)\left(a+2\right)\)
Vì tích của 2 số đầu nhỏ hơn tích của 2 số sau là 50 nên ta có phương trình:
\(\left(a+1\right)\left(a+2\right)-a\left(a+1\right)=50\)
\(\Leftrightarrow\left(a+1\right).\left(a+2-a\right)=50\)
\(\Leftrightarrow2.\left(a+1\right)=50\)
\(\Leftrightarrow a+1=25\)
\(\Leftrightarrow a=24\)
Vậy 3 số cần tìm lần lượt là 24 , 25 , 26
1) Ta có: \(x=7\Rightarrow x+1=8\)
Thay vào:
\(A=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-\left(x+1\right)x^{12}+...-\left(x+1\right)x^2+\left(x+1\right)x-5\)
\(A=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-...-x^3-x^2+x^2+x-5\)
\(A=x-5=7-5=2\)
1 ) \(x=7\Rightarrow x+1=8\)
\(\Rightarrow B=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-\left(x+1\right)x^{12}+...-\left(x+1\right)x^2+\left(x+1\right)x-5\)
\(=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-x^{13}+....-x^3-x^2+x^2+x-5\)
\(=x-5=7-5=2\)
2 ) Gọi 3 số tự nhiên liên tiếp đó là a; a + 1; a + 2 (a thuộc N)
theo đề bài ta có : \(\left(a+1\right)\left(a+2\right)-a\left(a+1\right)=50\)
\(\Leftrightarrow a^2+3a+2-a^2-a=50\)
\(\Leftrightarrow2a+2=50\)
\(\Rightarrow a=24\)
Vậy 3 số TN liên tiếp cần tìm là 24;25;26
\(B=x^{15}-8x^{14}+8x^{13}-8x^{12}+...+8x-5\)
\(=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-\left(x+1\right)x^{12}+...+\left(x+1\right)x-x+2\)
\(=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-x^{13}-x^{12}+...+x^2+x-x+2\)
\(=2\)
ta có: 8=7+1=x+1
\(B=x^{15}-8x^{14}+8x^{13}-...-8x^2+8x-5\)
\(\Rightarrow B=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-...-\left(x+1\right)x^2+\left(x+1\right)x-5\)
\(\Rightarrow B=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-...-x^3-x^2+x^2+x-5\)
\(\Rightarrow B=x-5\)
\(\Rightarrow B=7-5\)
\(\Rightarrow B=2\)
B = x15 - 8x14 + 8x13 - 8x2 + ... - 8x2 + 8x - 5
B = x^15 - 7x^14 -x^14+7x^13+x^13-7x^12-...-x^2+7x+x-5
B = x^14(x-7) - x^14(x-7) +...+x^2(x-7)-x(x-7)+x-5
B = 7-5=2
Tham khảo cách này nhoá~