tìm x biết |2x+3|=x+2 giúp mình vs
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
xy + x - 4y = 12
x + y(x - 4) = 12
y(x - 4) = 12 - x
\(y=\dfrac{-x+12}{x-4}\)
Vì \(x,y\inℕ\) nên
\(\left(-x+12\right)⋮\left(x-4\right)\)
\(\left(-x+12\right)-\left(x-4\right)⋮\left(x-4\right)\)
\(16⋮\left(x-4\right)\)
\(\left(x-4\right)\inƯ\left(16\right)\)
\(\left(x-4\right)\in\left\{1;-1;2;-2;4;-4;8;-8;16;-16\right\}\)
\(x\in\left\{5;3;6;2;8;0;12;-4;20;-12\right\}\)
\(y\in\left\{\dfrac{-5+12}{5-4};\dfrac{-3+12}{3-4};\dfrac{-6+12}{6-4};\dfrac{-2+12}{2-4};\dfrac{-8+12}{8-4};\dfrac{-0+12}{0-4};\dfrac{-12+12}{12-4};\dfrac{4+12}{-4-4};\dfrac{-20+12}{20-4};\dfrac{12+12}{-12-4}\right\}\)
\(y\in\left\{7;-9;3;-5;1;-3;0;-2;-\dfrac{1}{2};-\dfrac{7}{5}\right\}\)
\(\left(x;y\right)\in\left\{\left(5;7\right);\left(3;-9\right);\left(6;3\right);\left(2;-5\right);\left(8;1\right);\left(0;-3\right);\left(12;0\right);\left(-4;-2\right);\left(20;-\dfrac{1}{2}\right);\left(-12;-\dfrac{7}{5}\right)\right\}\)
Mà \(x,y\inℕ\) nên các giá trị cần tìm là \(\left(x;y\right)\in\left\{\left(5;7\right);\left(6;3\right);\left(8;1\right);\left(12;0\right)\right\}\)
2)
(2x + 3)(y - 2) = 15
\(\left(2x+3\right)\inƯ\left(15\right)\)
\(\left(2x+3\right)\in\left\{1;-1;3;-3;5;-5;15;-15\right\}\)
Ta lập bảng
2x + 3 | 1 | -1 | 3 | -3 | 5 | -5 | 15 | -15 |
y - 2 | 15 | -15 | 5 | -5 | 3 | -3 | 1 | -1 |
(x; y) | (-1; 17) | (-2; -13) | (0; 7) | (-3; -3) | (1; 5) | (-4; -1) | (6; 3) | (-9; 1) |
Mà \(x,y\inℕ\) nên các giá trị cần tìm là \(\left(x;y\right)\in\left\{\left(0;7\right);\left(1;5\right);\left(6;3\right)\right\}\)
\(\Rightarrow\hept{\begin{cases}2x-3=5\\2x-3=-5\end{cases}\Rightarrow\hept{\begin{cases}x=4\\x=-1\end{cases}}}\)
(2x-3)2=25
=>2x-3=5 hoặc 2x-3=-5
=> 2x= 8 hoặc 2x= -2
=> x=4 hoặc x=-1
2(x + 7) - (2x + 3).(x - 1) - 8 = 6x
<=> (2x + 14) - (2x + 3)(x - 1) - 8 - 6x = 0
<=> 2x + 14 - (2x2 + 3x - 2x - 3) - 8 - 6x = 0
<=> 2x + 14 - (2x2 + x - 3) - 8 - 6x = 0
<=> 2x + 14 - 2x2 - x + 3 - 8 - 6x = 0
<=> -2x2 - 5x + 6 = 0
<=> 2x2 + 5x - 6 = 0
<=> \(x^2+\frac{5}{2}x-3=0\)
\(\Leftrightarrow x^2+2.x.\frac{5}{4}+\frac{25}{16}-\frac{73}{16}=0\)
\(\Leftrightarrow x^2+2.x.\frac{5}{4}+\frac{25}{16}=\frac{73}{16}\)
\(\Leftrightarrow\left(x+\frac{5}{4}\right)^2=\frac{73}{16}\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{5}{4}=\frac{73}{16}\\x+\frac{5}{4}=-\frac{73}{16}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{73}{16}-\frac{5}{4}\\x=-\frac{73}{16}-\frac{5}{4}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{53}{16}\\x=-\frac{93}{16}\end{cases}}\)
2(x+7)-(2x+3)(x-1)-8=6x
\(\Leftrightarrow2x+14-2x^2+2x-3x+3-8=6x\)
\(\Leftrightarrow\) \(-2x^2+2x+2x-3x+3-8+14=6x\)
\(\Leftrightarrow-2x^2+x+9=6x\)
\(\Leftrightarrow-2x^2-5x+9=0\)
\(\Leftrightarrow\left(x-\left(\frac{-5+\sqrt{97}}{4}\right)\right)\left(x+\left(\frac{-5-\sqrt{97}}{4}\right)\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{-5+\sqrt{97}}{4}=0\\x+\frac{-5-\sqrt{97}}{4}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-5+97}{4}\\x=\frac{5-\sqrt{97}}{4}\end{cases}}\)
\(\frac{5}{x^2}-2x+2-\frac{8}{x^2}-2x+5=3\)
\(=>\left(\frac{5}{x^2}-\frac{8}{x^2}\right)-\left(2x+2x\right)+\left(2+5-3\right)=0\)\(=>-\frac{3}{x^2}-4x+4=0\)\(=>-3-4x^3+4x^2=0\) chịu :v
\(\Rightarrow\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}=\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{2x}{10.2}=\frac{3y}{15.3}=\frac{z}{21}=\frac{2x}{20}=\frac{3y}{45}=\frac{z}{21}=\frac{2x+3y+z}{20+45+21}=\frac{172}{86}=2\)
\(\frac{x}{10}=2\Rightarrow x=2.10=20\)
\(\frac{y}{15}=2\Rightarrow y=2.15=30\)
\(\frac{z}{21}=2\Rightarrow z=2.21=42\)
Vậy x=20 ; y=30 và z=42
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)
suy ra: x/5 = 45 => x = 225
y/7 = 45 => y = 315
z/9 = 45 => z = 405
a) \(\frac{0,5}{0,2}=\frac{1,25}{0,1x}\Leftrightarrow0,1x.0,5=0,2.1,25\)
\(\Leftrightarrow0,1x.0,5=0,25\Leftrightarrow0,1x=0,5\Leftrightarrow x=5\)
b) \(x-\frac{3}{2}=2x-\frac{4}{3}\Leftrightarrow x-2x=\frac{-4}{3}+\frac{3}{2}\)
\(\Leftrightarrow x-2x=\frac{1}{6}\Leftrightarrow-x=\frac{1}{6}\Leftrightarrow x=\frac{-1}{6}\)
c) \(x+\frac{13}{14}=\frac{4}{7}\Rightarrow x=\frac{4}{7}-\frac{13}{14}\Rightarrow x=\frac{-5}{14}\)
d)\(-3\left(x-2\right)=2x+1\)
\(\Leftrightarrow-3x+6=2x+1\Leftrightarrow-3x-2x=1-6\)
\(\Leftrightarrow-5x=-5\Leftrightarrow x=1\)
e) \(\left(x-1\right)^2-4=0\Leftrightarrow\left(x-1\right)^2=4\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=2\\x-1=\left(-2\right)\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)
cậu có thể tham khảo bài trên ạ, nếu thấy đúng thì cho mk 1 t.i.c.k ạ, thank nhiều
\(d,-3\left(x-2\right)=2x+1\)
\(< =>-3x+6=2x+1\)
\(< =>-3x-2x+6-1=0\)
\(< =>5-5x=0\)
\(< =>5\left(1-x\right)=0< =>x=1\)
\(e,\left(x-1\right)^2-4=0\)
\(< =>\left(x-1+2\right)\left(x-1-2\right)=\left(x+1\right)\left(x-3\right)=0\)
\(< =>\orbr{\begin{cases}x+1=0\\x-3=0\end{cases}< =>\orbr{\begin{cases}x=-1\\x=3\end{cases}}}\)
a) \(-\frac{7}{2}:\left(3-x\right)-0,75=\frac{1}{4}\)
\(\Leftrightarrow\frac{-7}{2\left(3-x\right)}=\frac{1}{4}+0,75=0,25+0,75=1\)
\(\Leftrightarrow2\left(3-x\right)=-7\)
\(\Leftrightarrow3-x=-\frac{7}{2}\)
\(\Leftrightarrow x=3+\frac{7}{2}\)
\(\Leftrightarrow x=\frac{13}{2}\)
b) \(\left|2x-\frac{4}{3}\right|-1\frac{1}{3}=-\frac{8}{9}\)
\(\Leftrightarrow\left|2x-\frac{4}{3}\right|=\frac{4}{3}-\frac{8}{9}=\frac{4}{9}\)
\(\Leftrightarrow\orbr{\begin{cases}2x-\frac{4}{3}=\frac{4}{9}\\2x-\frac{4}{3}=-\frac{4}{9}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x=\frac{4}{3}+\frac{4}{9}=\frac{16}{9}\\2x=\frac{4}{3}-\frac{4}{9}=\frac{8}{9}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{8}{9}\\x=\frac{4}{9}\end{cases}}\)
a: (x-3)(x-1)-x(x-2)=0
=>\(x^2-4x+3-x^2+2x=0\)
=>\(-2x+3=0\)
=>-2x=-3
=>\(x=\dfrac{3}{2}\)
b: \(\left(x+2y\right)^2-\left(2x-y\right)^2\)
\(=\left(x+2y+2x-y\right)\left(x+2y-2x+y\right)\)
\(=\left(3x+y\right)\left(-x+3y\right)\)
Để | 2x + 3 | = x + 2 <=> 2x + 3 = ± ( x + 2 )
TH1 : 2x + 3 = x + 2
<=> 2x - x = 2 - 3
=> x = - 1 ( TM )
TH2 : 2x + 3 = - ( x + 2 )
<=> 2x + 3 = - x - 2
<=> 2x + x = - 2 - 3
=> 3x = - 5 ( loại )
Vậy x = - 1
<=>x|3+1-2-1|=2
x1 =2 hoặc x.(-1)=2
=>x=2 và x=-2